The question is incomplete, the complete question is;
The student collects the H2(g) produced by the reaction and measures its volume over water at 298 K after carefully equalizing the water levels inside and outside the gas-collection tube, as shown in the diagram below. The volume is measured to be 45.6mL . The atmospheric pressure in the lab is measured as 765 torr , and the equilibrium vapor pressure of water at 298 K is 24 torr .(i) The pressure inside the tube due to the H2(g)
Answer:
741 torr
Explanation:
From the question we can see that the atmospheric pressure in the lab is 765 torr.
The vapour pressure of water = 24 torr
From Dalton's law of partial pressure, we know that;
Total pressure = Pressure of the H2 + Partial pressure of water vapour
Therefore;
Pressure of H2 = Total pressure - Partial pressure of water vapour
Pressure of H2 = 765 torr - 24 torr = 741 torr
THE COMPOUND IS: ethnoxybutane
Answer:
density= mass/volume
hence density of gold rock
= 386/20
=19.3 g/cc
It's called "Ionic compound"
Answer:
MCO3 is BaCO3
The mass of CO2 produced is 0.28g of CO2
Explanation:
The first step in solving the question is to put down the balanced reaction equations as shown in the image attached. Secondly, we obtain the relative number of moles acid and base as mentioned in the question. The balanced neutralization reaction equation is used to obtain the number of moles of excess acid involved in the neutralization reaction.
This is then subtracted from the total number of moles acid to give the number of moles of acid that reacted with MCO3. From here, the molar mass of MCO3 and identity of M can be found. Hence the mass of CO2 produced is calculated as shown.