<u>The Concept:</u>
We are given the density of a sample of the metal = 11.4 grams / cm³
and we need to find the volume occupied by a sample of 30.5 grams
For this solution, we will use dimensional analysis
from the given information, we can also say that the density of the metal is:
1 cm³ / 11.4 grams
If we multiply this value by 30.5 grams, the 'grams' in the numerator and the denominator will cancel out and we will be left with the volume occupied by 30.5 grams of the metal
<u>Solving for the volume:</u>
X 30.5 grams = (30.5 / 11.4) cm³
Volume of 30.5 grams of the sample = 2.68 cm³
Answer:
A meso compound is a non-optically active member of a set of stereoisomers, at least two of which are optically active.
Answer:
<em>What can be added to an atom to cause a nonvalence electron in the atom to temporarily become a valence electron </em>is<u><em> energy</em></u><em>.</em>
Explanation:
The normal state of the atoms, where all the electrons are occupying the lowest possible energy level, is called ground state.
The <em>valence electrons</em> are the electrons that occupy the outermost shell, this is the electrons in the highest main energy level (principal quantum number) of the atom.
So, a <em>nonvalence electron</em> occupies an orbital with less energy than what a valence electron does; in consequence, in order to a nonvalence electron jump from its lower energy level to the higher energy level of a valence electron, the former has to absorb (gain) energy.
This new state is called excited state and is temporary: the electron promoted to the higher energy level will emit the excess energy, in the form of light (photons), to come back to the lower energy level and so the atom return to the ground state.
Answer:
18.066 x 10^23 atoms of Au
Explanation:
ONE mole = 6.022 x 10^23 particles
3 x 6.022 x 10^23
KCl2 (potassium dichloride) ?I’m not completely sure