Answer:
photo is blurred plese send photo clearly
I think the correct answer would be HCl + NaHCO3 -> NaCl + H2O + CO2, 2HCl + CaCO3 -> CaCl2 + CO2 + H2O, 2HCl + Mg(OH)2 -> MgCl2 + 2H2O. Hydrochloic acid would react with the basic substances in the stomach which are magnesium hydroxide, sodium bicarbonate and <span>calcium carbonate.</span>
The age of the fossil given the present amount of Carbon-14 is given in the equation,
A(t) = A(o)(0.5)^t/h
where A(t) is the current amount, A(o) is the initial amount, t is time and h is the half-life. Substituting the known values to the equation,
A(t) / A(o) = 0.125 = (0.5)^(t/5730)
The value of t from the equation is 17190.
Thus, the age of the fossil is mostly likely to be 17190 years old.
Answer:
Molarity is 0.99 M
Explanation:
5.21% by mass, is a sort of concentration which shows the mass of solute in 100 g of solution.
Molarity is a sort of concentration that indicates the moles of solute in 1 L of solution (mol/L)
Let's find out the volume of solution by density.
Solution density = Solution mass / Solution volume
1.15 g/mL = 100 g / Solution volume
Solution volume = 100 g / 1.15 g/mL → 86.9 mL
We must have the volume of solution in L, so let's convert it.
86.9 mL / 1000 = 0.0869 L
Now, we have to determine the moles of solute (urea)
5.21 g . 1 mol / 60 g = 0.0868 moles
Mol/L = Molarity → 0.0868 moles / 0.0869L = 0.99 M
Answer:
ΔT = 76.5 °C
Explanation:
Given data:
Amount of water = 100.0 g
Energy needed = 32000 J
Change in temperature = ?
Solution,
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Now we will put the values in formula.
Q = m.c. ΔT
ΔT = Q / m.c
ΔT = 32000 j/ 100.0 g × 4.184 j/g. °C
ΔT = 32000 j / 418.4 j /°C
ΔT = 76.5 °C