Answer:
8.75 miles is 70%
Step-by-step explanation:
12.5
1.25 is 10 percent
multiply that by 7
8.75 miles
Answer:
B'(- 2, 2 )
Step-by-step explanation:
Given the translation rule (x, y ) → (x + 3, y - 2 )
This means add 3 to the original x- coordinate and subtract 2 from the original y- coordinate, that is
B(- 5, 4 ) → B'(- 5 + 3, 4 - 2 ) → B'(- 2, 2 )
Answer:
ROCK 2.3 kg
is about 22.5N
Step-by-step explanation:
To convert kg>>>>N
You multiply by 9.8 (this is good for estimating, but use more decimal places like, 9.80665 for more exact calculations).
You can divide N÷9.8 to find kg
see image
<span>Simplifying
3a2 + -2a + -1 = 0
Reorder the terms:
-1 + -2a + 3a2 = 0
Solving
-1 + -2a + 3a2 = 0
Solving for variable 'a'.
Factor a trinomial.
(-1 + -3a)(1 + -1a) = 0
Subproblem 1Set the factor '(-1 + -3a)' equal to zero and attempt to solve:
Simplifying
-1 + -3a = 0
Solving
-1 + -3a = 0
Move all terms containing a to the left, all other terms to the right.
Add '1' to each side of the equation.
-1 + 1 + -3a = 0 + 1
Combine like terms: -1 + 1 = 0
0 + -3a = 0 + 1
-3a = 0 + 1
Combine like terms: 0 + 1 = 1
-3a = 1
Divide each side by '-3'.
a = -0.3333333333
Simplifying
a = -0.3333333333
Subproblem 2Set the factor '(1 + -1a)' equal to zero and attempt to solve:
Simplifying
1 + -1a = 0
Solving
1 + -1a = 0
Move all terms containing a to the left, all other terms to the right.
Add '-1' to each side of the equation.
1 + -1 + -1a = 0 + -1
Combine like terms: 1 + -1 = 0
0 + -1a = 0 + -1
-1a = 0 + -1
Combine like terms: 0 + -1 = -1
-1a = -1
Divide each side by '-1'.
a = 1
Simplifying
a = 1Solutiona = {-0.3333333333, 1}</span>
Answer:
The expected monetary value of a single roll is $1.17.
Step-by-step explanation:
The sample space of rolling a die is:
S = {1, 2, 3, 4, 5 and 6}
The probability of rolling any of the six numbers is same, i.e.
P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 
The expected pay for rolling the numbers are as follows:
E (X = 1) = $3
E (X = 2) = $0
E (X = 3) = $0
E (X = 4) = $0
E (X = 5) = $0
E (X = 6) = $4
The expected value of an experiment is:

Compute the expected monetary value of a single roll as follows:
![E(X)=\sum x\cdot P(X=x)\\=[E(X=1)\times \frac{1}{6}]+[E(X=2)\times \frac{1}{6}]+[E(X=3)\times \frac{1}{6}]\\+[E(X=4)\times \frac{1}{6}]+[E(X=5)\times \frac{1}{6}]+[E(X=6)\times \frac{1}{6}]\\=[3\times \frac{1}{6}]+[0\times \frac{1}{6}]+[0\times \frac{1}{6}]\\+[0\times \frac{1}{6}]+[0\times \frac{1}{6}]+[4\times \frac{1}{6}]\\=1.17](https://tex.z-dn.net/?f=E%28X%29%3D%5Csum%20x%5Ccdot%20P%28X%3Dx%29%5C%5C%3D%5BE%28X%3D1%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D2%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D3%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%2B%5BE%28X%3D4%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D5%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D6%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%3D%5B3%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B4%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%3D1.17)
Thus, the expected monetary value of a single roll is $1.17.