Answer:
The answer to your question is Endothermic reaction
Explanation:
Endothermic reactions are reactions that absorbe energy from the environment.
All the reactions that needs heat to proceed are endothermic, example: photosynthesis, reactions in the laboratory that are heated, heat our meals.
This is an endothermic reaction because the enthalpy of the products is higher than the enthalpy of the reactants,
This is an incomplete question, here is a complete question.
A 0.130 mole quantity of NiCl₂ is added to a liter of 1.20 M NH₃ solution. What is the concentration of Ni²⁺ ions at equilibrium? Assume the formation constant of Ni(NH₃)₆²⁺ is 5.5 × 10⁸
Answer : The concentration of
ions at equilibrium is, 
Explanation : Given,
Moles of
= 0.130 mol
Volume of solution = 1 L

Concentration of
= Concentration of
= 0.130 M
Concentration of
= 1.20 M

The equilibrium reaction will be:
![Ni^{2+}(aq)+6NH_3(aq)\rightarrow [Ni(NH_3)_6]^{2+}](https://tex.z-dn.net/?f=Ni%5E%7B2%2B%7D%28aq%29%2B6NH_3%28aq%29%5Crightarrow%20%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D)
Initial conc. 0.130 1.20 0
At eqm. x [1.20-6(0.130)] 0.130
= 0.42
The expression for equilibrium constant is:
![K_f=\frac{[Ni(NH_3)_6^{2+}]}{[Ni^{2+}][NH_3]^6}](https://tex.z-dn.net/?f=K_f%3D%5Cfrac%7B%5BNi%28NH_3%29_6%5E%7B2%2B%7D%5D%7D%7B%5BNi%5E%7B2%2B%7D%5D%5BNH_3%5D%5E6%7D)
Now put all the given values in this expression, we get:


Thus, the concentration of
ions at equilibrium is, 
Answer:
V₂ = 111.3 mL
Explanation:
Given data:
Initial volume of gas = 50.0 mL
Initial temperature = standard = 273.15 K
Final volume = ?
Final temperature = 335 °C (335+273.15 = 608.15 K)
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 50.0 mL ×608.15 K / 273.15 k
V₂ = 30407.5 mL.K / 273.15 K
V₂ = 111.3 mL
= 6.42 × 10²²
(scientific notation)
= 6.42e22
(scientific e notation)
= 64.2 × 10²¹
(engineering notation)
(sextillion; prefix zetta- (Z))
= 64200000000000000000000
(real number)