1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zavuch27 [327]
4 years ago
8

Camilo practica tiro al blanco. En cada disparo acertado puede obtener 5, 8, o 10 puntos. En su última práctica, su puntuación t

otal fue de 99, él obtuvo 8 puntos tantas veces como 10 puntos. Si en el 75% de las veces acertó al blanco, ¿cuántos disparos hizo Camilo en total?
Mathematics
1 answer:
Radda [10]4 years ago
8 0

Answer:

20 disparos

Step-by-step explanation:

Primera etapa es de determinar cuantos tiros de Camilo acertaron al blanco.

Sabemos que en su última práctica, obtuvo 99 puntos con una mezcla de 5, 8 y 10 puntos.  Eso puedo se exprimir así:

5x + 8y + 10x = 99

Sabemos también que el obtuvo tantos tiros de 8 puntos que de 10 puntos, entonces

y = z

Podemos mezclar las 2 ecuaciones y substituir y por z:

5x + 8y + 10y = 99

5x +18y = 99

Una ecuación, dos variables... no es fácil... pero son números pequeños y se puede intentar soluciones.  Entonces, cuantas veces podemos multiplicar 5 y 18 para obtener 99?

El más simple es de hacer la tabla de multiplicación de 18 y ver cual número nos deja con un multiple de 5.

18 x 1 = 18 (99 - 18 = 81, no un multiple e 5)

18 x 2 = 36 (99 - 36 = 63, no un multiple de 5)

18 x 3 = 54 (99 - 54 = 45, SI, un multiple de 5)

18 x 4 = 72 (99 - 72 = 27, no un multiple de 5)

18 x 5 = 90 (99 - 90 = 9, no un multiple de 5)

Entonces, sabemos que y = 3 y z = 3

5x + 18 (3) = 99

5x + 54 = 99

5x = 45

x = 9

El tiró 9 veces por 5 puntos, 3 veces por 8 puntos y 3 veces pour 10 puntos.

En total tiró 15 veces.

Si acertó 75% (3/4) de las veces, cuantos tiros total?

\frac{15}{3/4} = \frac{15 * 4}{3} = 20

Camilo tiró 20 veces en total.

You might be interested in
-0.9+28<br> ----<br> 6<br> help me solve the task <br>im a little lazy ​
Anvisha [2.4K]

Answer:

around 4.52.

Fraction form: 4\frac{52}{100}

Step-by-step explanation:

Brainliest?

7 0
3 years ago
Helppppp
sasho [114]

Answer:

186.5 + 2x

Step-by-step explanation:

First, radify 25. Luckily it's a perfect square so it will be 5.

Second, divide within the parentheses. You're expression should look like this.

(93-5+x+42/8)2

Divide 42/8. The decimal form would be 5.25, while the fraction should be 5 1/4.

Third, solve within the parentheses from left to right. Right now you're expression should look like this:

(93-5+x+5.25)2

Add all like terms

93-5+5.25=93.25

Fourth, multiply. Right now the expression should look like this:

(93.25 + x) 2

186.5 + 2x

8 0
3 years ago
A car with an initial cost of $26,500 depreciates at a rate of 7.5% per year. Write the function that models this situation. The
solniwko [45]

Answer:

f(x) = 26500 * (0.925)^x

It will take 7 years

Step-by-step explanation:

A car with an initial cost of $26,500 depreciates at a rate of 7.5% per year. Write the function that models this situation. Then use your formula to determine when the value of the car will be $15,000 to the nearest year.

To find the formula we will use this formula: f(x) = a * b^x. A is our initial value which in this case is $26500. B is how much the value is increasing or decreasing. In this case it is decreasing by 7.5% per year. Since the car value is decreasing we will subtract 0.075 from 1. This will result in the formula being f(x) = 26500 * (0.925)^x. Now to find the value of the car to the nearest year of when the car will be 15000 we plug 15000 into f(x). 15000 = 26500 * (0.925)^x. First we divide both side by 26500 which will make the equation: 0.56603773584=(0.925)^x. Then we will root 0.56603773584 by 0.925. This will result in x being 7.29968 which is approximately 7 years.

4 0
4 years ago
All of the functions shown below are either exponential growth or decay functions.
AlekseyPX

Answer:

Step-by-step explanation:

If an exponential function is in the form of y = a(b)ˣ,

a = Initial quantity

b = Growth factor

x = Duration

Condition for exponential growth → b > 1

Condition for exponential decay → 0 < b < 1

Now we ca apply this condition in the given functions,

1). y=3.2(1+0.45)^{2x}

   Here, (1 + 0.45) = 1.45 > 1

   Therefore, It's an exponential growth.

2). y=(0.85)^{3x}

    Here, (0.85) is between 0 and 1,

    Therefore, it's an exponential decay.

3). y = (1 - 0.03)ˣ + 4

    Here, (1 - 0.03) = 0.97

    And 0 < 0.97 < 1

    Therefore, It's an exponential decay.

4). y = 0.5(1.2)ˣ + 2

    Here, 1.2 > 1

    Therefore, it's an exponential growth.

5 0
3 years ago
What are all the primes of 52
AleksandrR [38]
<span>52 can be broken down to the following 
2*26 =52
2*(2*13) <---13 x 2=26 x 2=52 
2*2*13 or 2^2*13 <--BOTH mean the same thing :)  </span><span>
</span>
6 0
3 years ago
Other questions:
  • The ratio of the number of miles run to the number of miles biked is equivalent for each row in the table.
    7·1 answer
  • Both pairs of angles in activity A (
    8·1 answer
  • -3(10+-5)/(10-(-5))^2
    6·1 answer
  • Solve 3(x+1) -2x= -6
    12·1 answer
  • Please help ASAP ASAP
    14·2 answers
  • Stadium has 48,000 seats seats sell for $30 in section 8 $24 in section B and $18 in section C the number of seats in section a
    13·1 answer
  • Domain:<br> Range:<br> HELP I BEG
    10·1 answer
  • What is the greatest common factor of 57 and 76?
    12·2 answers
  • Pythagorean theorem !
    15·1 answer
  • What is the exact value of e?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!