Answer:
-7/25.
Step-by-step explanation:
From the given point P we see that the hypotenuse = √(3*2 + 4^2) = 5.
So cos θ = 3/5
cos 2 θ = 2 cos^2 θ - 1
= 2 * (3/5)^2 -1
= -7/25.
Answer:
r = (ab)/(a+b)
Step-by-step explanation:
Consider the attached sketch. The diagram shows base b at the bottom and base a at the top. The height of the trapezoid must be twice the radius. The point where the slant side of the trapezoid is tangent to the inscribed circle divides that slant side into two parts: lengths (a-r) and (b-r). The sum of these lengths is the length of the slant side, which is the hypotenuse of a right triangle with one leg equal to 2r and the other leg equal to (b-a).
Using the Pythagorean theorem, we can write the relation ...
((a-r) +(b-r))^2 = (2r)^2 +(b -a)^2
a^2 +2ab +b^2 -4r(a+b) +4r^2 = 4r^2 +b^2 -2ab +a^2
-4r(a+b) = -4ab . . . . . . . . subtract common terms from both sides, also -2ab
r = ab/(a+b) . . . . . . . . . divide by the coefficient of r
The radius of the inscribed circle in a right trapezoid is r = ab/(a+b).
_____
The graph in the second attachment shows a trapezoid with the radius calculated as above.
Well you would move the order around to 13+7+29 and that would be the commutative property
Answer:
$1,179
Step-by-step explanation:
Lets use the compound interest formula provided to solve this:

<em>P = initial balance</em>
<em>r = interest rate (decimal)</em>
<em>n = number of times compounded annually</em>
<em>t = time</em>
<em />
First, lets change 2.6% into a decimal:
2.6% ->
-> 0.026
Since the interest is compounded quarterly, we will use 4 for n. Lets plug in the values now:


The account balance after 10 years will be $1,179
Answer:
Coordinates switch, and the new y-coordinate changes sign
Explanation:
We have point A with the coordinates (-1,2), when we rotate it c90º it becomes (2,1).
What happened? The coordinates switched and the x-coordinate of A (-1) became the y-coordinate of A' (1) and it changed its sign.