S= number of small boxes
l= number of large boxes
equation 1: s+l=120
equation 2: 15s+45l=3300
solve by elimination, multiply equation 1 by -15.
-15(s+l=120) = -15s-15l=-1800 add to equation 2.
-15s+15s-15l+45l=-1800+3300 = 30l=1500
30l=1500 , l=50
s+l=120, s+50=120 --> s=70
Answer:
From the frequency table, let's calculate the row total.
Row total for phone call = 19 + 9 = 28
Row total for no phone call = 8 +6 = 14
To calculate their respective row relative frequencies, let's use:
Row relative freq =
Now, the two-way frequency table will be computed as:
For phone call:
Desirable behavior =
≈0.69
Undesirable behaviour =
≈0.32
No phone call:
Desirable behaviour =
≈ 0.57
Undesirable behaviour =
≈ 0.43
The complete two-way table is attached.
Based on the information represented by the boxplot ;
- Latasha's lowest sale amount = 50
- Kayla's median is between 200 and 300
- Latasha has a greater spread due to higher IQR value
1.) <em><u>The Lowest amount of sale made by Latasha in one month </u></em>
- The minimum value is denoted by the starting position of the lower whisker on a boxplot.
- Lowest amount of sale made by Latasha = 50
2.) <em><u>50</u></em><em><u>%</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>sales</u></em><em><u> </u></em><em><u>made</u></em><em><u> </u></em><em><u>by</u></em><em><u> </u></em><em><u>Kayla</u></em><em><u> </u></em><em><u>:</u></em>
- 50% of sales made marks the median value in a boxplot, it is denoted by the vertical line in between the box.
- 50% of sales made by Kayla is between 200 and 300
- With median sale value being 250
3.) <em><u>Spread</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>middle</u></em><em><u> </u></em><em><u>50</u></em><em><u>%</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>sales</u></em><em><u> </u></em><em><u>:</u></em>
- The measure of spread of the middle 50% of a distribution on a boxplot is the Interquartile range (IQR) of the distribution
- IQR = Upper Quartile (Q3) - Lower quartile(Q1)
<u>For Latasha</u> :
- Q3 = 450 (Endpoint of the box)
- Q1 = 150 (starting point of the box)
<u>For</u><u> </u><u>Kayla</u><u> </u><u>:</u><u> </u>
- Q3 = 375 (Endpoint of the box)
- Q1 = 100 (starting point of the box)
- IQR = 375 - 100 = 275
- Since, Latasha's IQR is greater than Kayla's, then Latasha has a greater mid 50% spread than Kayla.
Learn more :brainly.com/question/24582786