<u>Answer:
</u>
Expression x + 2my + z represents cost of order where x, y, z are cost of small , medium and large drinks (in dollars) respectively.
<u>Solution:
</u>
Given that
Juan’s family ordered a small drink and m medium drinks.
Alex family ordered m medium drinks and a large drink.
Need to write an algebraic expression which shows total cost of both order in dollars.
Let’s assume cost of one small drink = x
And assume cost of one medium drink = y
And assume cost of one large drink = z
So now cost of order of Juan’s family is equal to cost of 1 small drink + cost of m medium drinks = 1
x + m
y
= x + my
And cost of order of Alex family is equal to cost of m medium drinks + cost of one large drink
= m x y + 1 x z
=my + z
So total cost of both order in dollars = x + my + my + z = x + 2my + z
Hence expression x + 2my + z represents cost of order where x , y , z are cost of small , medium and large drinks (in dollars) respectively.
Answer:
111 students because they like to drink good water
Step-by-step explanation:
BLAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
<h3>
Answer: -7 < x < 17</h3>
====================================================
Explanation:
Plug in the lower bound of the domain, which is x = -3
f(x) = 3x+2
f(-3) = 3(-3)+2
f(-3) = -9+2
f(-3) = -7
If x = -3, then the output is y = -7. Since f(x) is an increasing function (due to the positive slope), we know that y = -7 is the lower bound of the range.
If you plugged in x = 5, you should find that f(5) = 17 making this the upper bound of the range.
The range of f(x) is -7 < y < 17
Recall that the domain and range swap places when going from the original function f(x) to the inverse 
This swap happens because how x and y change places when determining the inverse itself. In other words, you go from y = 3x+2 to x = 3y+2. Solving for y gets us y = (x-2)/3 which is the inverse.
-----------------------
In short, we found the range of f(x) is -7 < y < 17.
That means the domain of the inverse is -7 < x < 17 since the domain and range swap roles when going from original to inverse.
The adult's genders aren't specified so that doesn't matter.
There are 132 boys for every 88 girls
(132:88)
To simplify the ratio, divide both numbers by the GFC (Divide both sides by 44)
3:2
There are 3 boys for every 2 girls