1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrMuchimi
3 years ago
9

Line that passes through (-2,1) and (4,13)

Mathematics
1 answer:
Delvig [45]3 years ago
6 0
Whats the question??

You might be interested in
Solve 5x -c = k for x
inysia [295]

x = \frac{k+c}{5}

isolate 5x by adding c to both sides of the equation

5x = k + c ( divide both sides by 5 )

x = \frac{k+c}{5}


6 0
3 years ago
Read 2 more answers
Please help asap :DDD
Musya8 [376]
X< 5 and (- infinity, 5 )
4 0
2 years ago
Read 2 more answers
Mary is booking a 3-night stay at a hotel. The rate is $69 per room plus tax. If
Verdich [7]
It’s D 69x3= 207

6% of 207 = 12.42
2% of 207 = 4.14
1% of 207 = 2.07
12.42 + 4.14 + 2.07 = 18.63
207+18.63 = 225.63
8 0
2 years ago
On a single set of axes, sketch a picture of the graphs of the following four equations: y = −x+ √ 2, y = −x− √ 2, y = x+ √ 2, a
Artist 52 [7]

Answer:

( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 ),  ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

Step-by-step explanation:

Given:

- Four functions to construct a diamond:

                y = −x+ √ 2,  y = −x− √ 2,  y = x+ √ 2, and y = x − √ 2.

Find:

a)Show that the unit circle sits inside this diamond tangentially; i.e. show that the unit circle intersects each of the four lines exactly once.

b)Find the intersection points between the unit circle and each of the four lines.

(c) Construct a diamond shaped region in which the circle of radius 1 centered at (−2, − 1) sits tangentially. Use the techniques of this section to help.

Solution:

- For first part see the attachment.

- The equation of the unit circle is given as follows:

                                      x^2 + y^2 = 1

- To determine points of intersection we have to solve each given function of y with unit circle equation for set of points of intersection:

                                For:  y = −x+ √ 2 , x - √ 2

                                And: x^2 + y^2 = 1

                                x^2 + (+/- * (x - √ 2))^2 = 1

                                x^2 + (x - √ 2)^2 = 1

                                2x^2 -2√ 2*x + 2 = 1

                                2x^2 -2√ 2*x + 1 = 0

                                 2[ x^2 - √ 2] + 1 = 0

Complete sqr:         (1 - 1/√ 2)^2 = 0

                                 x = 1/√ 2 , x = 1/√ 2                                          

                                 y = -1/√ 2 + √ 2 = 1/√ 2

                                 y = 1/√ 2 - √ 2 = - 1/√ 2

Points are:                ( 1/√ 2 , 1/√ 2 ) , ( 1/√ 2 , - 1/√ 2 )

- Using vertical symmetry of unit circle we can also evaluate other intersection points by intuition:

                                x = - 1/√ 2

                                 y = 1/√ 2 , -1/√ 2

Points are:              ( -1/√ 2 , 1/√ 2 ) , ( -1/√ 2 , - 1/√ 2 )  

- To determine the function for the rhombus region that would be tangential to unit circle with center at ( - 2 , - 1 ):

- To shift our unit circle from origin to ( - 2 , - 1 ) i.e two units left and 1 unit down.

- For shifts we use the following substitutions:

                           x = x + 2  ....... 2 units of left shift

                           y = y + 1 .......... 1 unit of down shift

- Now substitute the above shifting expression in all for functions we have:

                          y = −x+ √ 2 ----->  y + 1 = - ( x + 2 ) + √ 2

                          y = −x− √ 2 ----->  y + 1 = - ( x + 2 ) - √ 2

                          y = x- √ 2 ------->  y + 1 = ( x + 2 ) - √ 2

                          y = x+ √ 2 ------> y + 1 = ( x + 2 ) + √ 2

                          x^2 + y^2 = 1 ----->  ( x + 2 )^2 + ( y + 1)^2 = 1

- The following diamond shape graph would have the 4 functions as:

             y + 1 = - ( x + 2 ) + √ 2 , y + 1 = - ( x + 2 ) - √ 2 ,  y + 1 = ( x + 2 ) - √ 2

             y + 1 = ( x + 2 ) + √ 2  ,   ( x + 2 )^2 + ( y + 1)^2 = 1

- See attachment for the new sketch.            

7 0
3 years ago
F(x) = -3x2 Find f(-2)​
Serga [27]

Answer:

Step-by-step explanation:

f(-2)= 3x(-2)^2

evaluate:

f(-2)=3x2^2

multiple:

f(-2)=3x4

solution

f(-2)=12

8 0
3 years ago
Other questions:
  • Calvin's rug covers 1/8 of the floor space in his bedroom how much floor space would be covered if Calvin had four rugs of that
    8·1 answer
  • Find the surface area of the triangular prism please.
    10·1 answer
  • It took Ruby 23 minutes to make meatballs and 29 minutes to make tomato sauce. How much time did it take Ruby to make meatballs
    11·2 answers
  • Find the value of the underlined 10,698 under lined digit is 9
    11·1 answer
  • Y+1=3(x+2) in slope intercept form
    11·2 answers
  • Find the area of the shaded polygons: Area of shaded polygon is __square units
    13·1 answer
  • What is 8 2/3 divided by 1 1/5
    5·2 answers
  • Tell the shape, center, and spread of this data set.
    10·1 answer
  • Find the missing length indicated<br><br> Thank you!
    11·1 answer
  • MATH<br> can somebody answer these questions for me??
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!