Answer:
Correct answers: 2 and 3
Explanation:
1- correct would be: Isolation of ibuprofen is not dangerous, but it is necessary because only one enantiomer has effect on interaction with biologic <em>diana</em>
<em>2: Correct! This property of diastereomeric salts (differing solubilities) is really useful for the isolation of the original enantiomers</em>
<em>3: Correct! we can only observe their properties, like polirized light rotation or separation in an assimetric column for chromatography.</em>
4: correct would be: diastereomeric salts do not rotate light, they have lost the property of anantiomers that originated them
<h3>
Answer:</h3>
495 g K₃N
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.77 mol K₃N
<u>Step 2: Identify Conversions</u>
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of K₃N - 3(39.10) + 14.01 = 131.31 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
495.039 g K₃N ≈ 495 g K₃N
Answer:
jijji[ojooooooooooooooooooooooooo
Explanation:
kjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
Answer:
Lowkey dont know the language
Explanation:
Ernest Rutherford's gold-foil experiment showed the density of atoms.
<span>The experiment proved that most of an atom is empty space with a very small positively charged nucleus in the middle.
So, from the given statements he following is true:
</span><span>Ernest Rutherford's gold-foil experiment showed </span>the existence of a dense, positively charged center in an atom.