So, the definite integral  
Given that 
 
 
We find

<h3>Definite integrals </h3>
Definite integrals are integral values that are obtained by integrating a function between two values.
So, 
So, ![\int\limits^1_0 {(4 - 6x^{2} )} \, dx = \int\limits^1_0 {4} \, dx - \int\limits^1_0 {6x^{2} } \, dx \\=  4[x]^{1}_{0}    - \int\limits^1_0 {6x^{2} } \, dx \\=  4[x]^{1}_{0}    - 6\int\limits^1_0 {x^{2} } \, dx \\= 4[1 - 0]    - 6\int\limits^1_0 {x^{2} } \, dx\\= 4[1]    - 6\int\limits^1_0 {x^{2} } \, dx\\= 4    - 6\int\limits^1_0 {x^{2} } \, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E1_0%20%7B%284%20-%206x%5E%7B2%7D%20%29%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5E1_0%20%7B4%7D%20%5C%2C%20dx%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%20%5Cint%5Climits%5E1_0%20%7B6x%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%20%204%5Bx%5D%5E%7B1%7D_%7B0%7D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%20%5C%5C%3D%204%5B1%20-%200%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%5B1%5D%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx%5C%5C%3D%204%20%20%20%20-%206%5Cint%5Climits%5E1_0%20%7Bx%5E%7B2%7D%20%7D%20%5C%2C%20dx)
Since
  ,
, 
Substituting this into the equation the equation, we have

So, 
Learn more about definite integrals here:
brainly.com/question/17074932
 
        
             
        
        
        
Answer:
The length of the slide he needs to make = AC = L = 14.3 ft
Step-by-step explanation:
From the Δ ABC 
AC = Length of the slide = L
AB = 9 ft
 °
 °
From  Δ ABC 

Put all the value in the above formula 


L = AC = 14.3 ft
Therefore the length of the slide he needs to make = AC = L = 14.3 ft
 
        
             
        
        
        
Slope of a line parallel to given line is equal to slope of given line.
<u>SOLUTION:</u>
Given that, we have to find the slope of any line that is parallel to a line in the co – ordinate plane.
We know that, slope of a line is tan( angle  of a line made between that line and the x – axis)
So, consider two lines which are parallel , then, angles made by both the parallel lines will be equal with the x – axis.
Then, tan( angle by 1st line) = tan( angle by 2nd line)
Which means that, slope of two lines will be equal.
Hence, slope of a line parallel to given is equal to slope of given line.