Answer:
(a)![E[X+Y]=E[X]+E[Y]](https://tex.z-dn.net/?f=E%5BX%2BY%5D%3DE%5BX%5D%2BE%5BY%5D)
(b)
Step-by-step explanation:
Let X and Y be discrete random variables and E(X) and Var(X) are the Expected Values and Variance of X respectively.
(a)We want to show that E[X + Y ] = E[X] + E[Y ].
When we have two random variables instead of one, we consider their joint distribution function.
For a function f(X,Y) of discrete variables X and Y, we can define
![E[f(X,Y)]=\sum_{x,y}f(x,y)\cdot P(X=x, Y=y).](https://tex.z-dn.net/?f=E%5Bf%28X%2CY%29%5D%3D%5Csum_%7Bx%2Cy%7Df%28x%2Cy%29%5Ccdot%20P%28X%3Dx%2C%20Y%3Dy%29.)
Since f(X,Y)=X+Y
![E[X+Y]=\sum_{x,y}(x+y)P(X=x,Y=y)\\=\sum_{x,y}xP(X=x,Y=y)+\sum_{x,y}yP(X=x,Y=y).](https://tex.z-dn.net/?f=E%5BX%2BY%5D%3D%5Csum_%7Bx%2Cy%7D%28x%2By%29P%28X%3Dx%2CY%3Dy%29%5C%5C%3D%5Csum_%7Bx%2Cy%7DxP%28X%3Dx%2CY%3Dy%29%2B%5Csum_%7Bx%2Cy%7DyP%28X%3Dx%2CY%3Dy%29.)
Let us look at the first of these sums.
![\sum_{x,y}xP(X=x,Y=y)\\=\sum_{x}x\sum_{y}P(X=x,Y=y)\\\text{Taking Marginal distribution of x}\\=\sum_{x}xP(X=x)=E[X].](https://tex.z-dn.net/?f=%5Csum_%7Bx%2Cy%7DxP%28X%3Dx%2CY%3Dy%29%5C%5C%3D%5Csum_%7Bx%7Dx%5Csum_%7By%7DP%28X%3Dx%2CY%3Dy%29%5C%5C%5Ctext%7BTaking%20Marginal%20distribution%20of%20x%7D%5C%5C%3D%5Csum_%7Bx%7DxP%28X%3Dx%29%3DE%5BX%5D.)
Similarly,
![\sum_{x,y}yP(X=x,Y=y)\\=\sum_{y}y\sum_{x}P(X=x,Y=y)\\\text{Taking Marginal distribution of y}\\=\sum_{y}yP(Y=y)=E[Y].](https://tex.z-dn.net/?f=%5Csum_%7Bx%2Cy%7DyP%28X%3Dx%2CY%3Dy%29%5C%5C%3D%5Csum_%7By%7Dy%5Csum_%7Bx%7DP%28X%3Dx%2CY%3Dy%29%5C%5C%5Ctext%7BTaking%20Marginal%20distribution%20of%20y%7D%5C%5C%3D%5Csum_%7By%7DyP%28Y%3Dy%29%3DE%5BY%5D.)
Combining these two gives the formula:

Therefore:
![E[X+Y]=E[X]+E[Y] \text{ as required.}](https://tex.z-dn.net/?f=E%5BX%2BY%5D%3DE%5BX%5D%2BE%5BY%5D%20%5Ctext%7B%20%20as%20required.%7D)
(b)We want to show that if X and Y are independent random variables, then:

By definition of Variance, we have that:
![Var(X+Y)=E(X+Y-E[X+Y]^2)](https://tex.z-dn.net/?f=Var%28X%2BY%29%3DE%28X%2BY-E%5BX%2BY%5D%5E2%29)
![=E[(X-\mu_X +Y- \mu_Y)^2]\\=E[(X-\mu_X)^2 +(Y- \mu_Y)^2+2(X-\mu_X)(Y- \mu_Y)]\\$Since we have shown that expectation is linear$\\=E(X-\mu_X)^2 +E(Y- \mu_Y)^2+2E(X-\mu_X)(Y- \mu_Y)]\\=E[(X-E(X)]^2 +E[Y- E(Y)]^2+2Cov (X,Y)](https://tex.z-dn.net/?f=%3DE%5B%28X-%5Cmu_X%20%20%2BY-%20%5Cmu_Y%29%5E2%5D%5C%5C%3DE%5B%28X-%5Cmu_X%29%5E2%20%20%2B%28Y-%20%5Cmu_Y%29%5E2%2B2%28X-%5Cmu_X%29%28Y-%20%5Cmu_Y%29%5D%5C%5C%24Since%20we%20have%20shown%20that%20expectation%20is%20linear%24%5C%5C%3DE%28X-%5Cmu_X%29%5E2%20%20%2BE%28Y-%20%5Cmu_Y%29%5E2%2B2E%28X-%5Cmu_X%29%28Y-%20%5Cmu_Y%29%5D%5C%5C%3DE%5B%28X-E%28X%29%5D%5E2%20%20%2BE%5BY-%20E%28Y%29%5D%5E2%2B2Cov%20%28X%2CY%29)
Since X and Y are independent, Cov(X,Y)=0

Therefore as required:

Answer:
-32.25 + 10.75 = -21.5
Step-by-step explanation:
-10.75 + -10.75 = -21.5
-32.25 + 10.75 = -21.5
Answer:
D
Step-by-step explanation:
i think so but it will help you
Answer:
Ok im using a standered form calculator:
1. 9/7x + 1/7 = -8
2. y = -6/5x - 3 = -11
3. y = 1/3x - 2 = -10
Step-by-step explanation:
I will be glad to help more
In the second quadrant, both cos and tan are negative while only sin is positive.
To find tan, we will use the following property below:

Sec is the reciprocal of cos. If cos is a/b then sec is b/a. Since cos is 2/3 then sec is 3/2

Since tan is negative in the second quadrant. Hence,

Answer