Answer:
The final temperature of hydrogen gas is 537.63 K.
Explanation:
Given data:
Initial volume = 2.00 L
Initial pressure = 740 mmHg (740/760 = 0.97 atm)
Initial temperature = 25 °C (25 +273 = 298 K)
Final temperature =?
Final volume = 3.50 L
Final pressure = standard = 1 atm
Formula:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
P₁V₁/T₁ = P₂V₂/T₂
T₂ = P₂V₂T₁ / P₁V₁
T₂ = 1 atm × 3.5 L × 298 K / 0.97 atm × 2.00 L
T₂ = 1043 atm .L. K / 1.94 atm. L
T₂ = 537.63 K
Answer:
a
Explanation:
the answer is a i'm pretty sure it might be wrong tho i'm sorry
To determine the mass of oxygen per gram of sulfur for sulfur dioxide, we simply obtain the ratio of the mass of oxygen and the mass of sulfur produced from the decomposition of sulfur dioxide. All other values given in the problem statement above are just to confuse us that the question is a difficult one. We do as follows:
mass of oxygen per gram sulfur = 3.45 g / 3.46 g
mass of oxygen per gram sulfur = 0.9971 g O2 / g S
Momentum = mass x velocity. 45g = 0.045kg. 0.045 x 75 = 3.375 kgm/s
Burette is a very accurate measuring instrument when adding solutions and has a measurement error of 0.05 mL.
Small volumes of solutions can be transferred from the burette at a controllable rate.
In this instance NaOH is in the burette.
Initial reading of NaOH is 0.20 mL
end point is the point at which the chemical reaction reaches completion. In acid base reactions, end point is when all the H⁺ ions have reacted with OH⁻ ions.
final reading of NaOH is 24.10 mL
to find the volume of NaOH dispensed we have to find the difference between final reading and initial reading
volume of NaOH added = 24.10 mL - 0.20 mL = 23.90 mL
volume of NaOH dispensed is 23.90 mL