The answer is: A) Na3PO4 + 3KOH → 3NaOH + K3PO4, because K retains the same charge throughout the reaction.
This chemical reaction is double displacement reaction - cations (K⁺ and Na⁺) and anions (PO₄³⁻⁻ and OH⁻) of the two reactants switch places and form two new compounds.
Na₃PO₄ is sodium phosphate.
KOH is potassium hydroxide.
NaOH is sodium hydroxide.
K₃PO₄ is potassium phosphate.
According to the mass conservation law, there are same number of atoms on both side of balanced chemical reaction.
Yes, it is a Compound.
They both comprehend with the atoms of each sourse!
LaChatelier's Principle
LaChatelier's Principle is a principle stating that if a constraint (such as a change in pressure, temperature, or concentration of a reactant) is applied to a system in equilibrium, the equilibrium will shift so as to tend to counteract the effect of the constraint.
Answer:
0.486 L
Explanation:
Step 1: Write the balanced reaction
2 KCIO₃(s) ⇒ 2 KCI (s) + 3 O₂(g)
Step 2: Calculate the moles corresponding to 1.52 g of KCIO₃
The molar mass of KCIO₃ is 122.55 g/mol.
1.52 g × 1 mol/122.55 g = 0.0124 mol
Step 3: Calculate the moles of O₂ produced from 0.0124 moles of KCIO₃
The molar ratio of KCIO₃ to O₂ is 2:3. The moles of O₂ produced are 3/2 × 0.0124 mol = 0.0186 mol
Step 4: Calculate the volume corresponding to 0.0186 moles of O₂
0.0186 moles of O₂ are at 37 °C (310 K) and 0.974 atm. We can calculate the volume of oxygen using the ideal gas equation.
P × V = n × R × T
V = n × R × T/P
V = 0.0186 mol × (0.0821 atm.L/mol.K) × 310 K/0.974 atm = 0.486 L