Primary consumers operate one level up from plants and eat only plants
small crustaceans as primary consumers
antelopes as primary consumers
mice are the primary consumers
Answer:
The amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure is 7.026 kJ.
Explanation:
A molar heat of vaporization of 40.66 kJ / mol means that 40.66 kJ of heat needs to be supplied to boil 1 mol of water at its normal boiling point.
To know the amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure, the number of moles represented by 3.11 g of water is necessary. Being:
the molar mass of water is:
H₂O= 2* 1 g/mole + 16 g/mole= 18 g/mole
So: if 18 grams of water are contained in 1 mole, 3.11 grams of water in how many moles are present?

moles of water= 0.1728
Finally, the following rule of three can be applied: if to boil 1 mole of water at its boiling point it is necessary to supply 40.66 kJ of heat, to boil 0.1728 moles of water, how much heat is necessary to supply?

heat= 7.026 kJ
<u><em>The amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure is 7.026 kJ.</em></u>
Answer: 2NOBr(g) ⇌ 2NO(g) + Br2(g)
Explanation: For volume changes in equillibrium, the following are to be taken into consideration:
- Volume changes have no effect on equillibrium system that contains solid or aqueous solutions.
- An increase in volume of an equilibrium system will shift to favor the direction that produces more moles of gas.
- A decrease in volume of an equilibrium system will shift to favor the direction that produces less moles of gas.
- Volume changes will have no effect on the equillibrium system if there is an equal number of moles on both sides of the reaction.
2NOBr(g) ⇌ 2NO(g) + Br2(g) is the equillibrium system because there are more moles of products,therefore an increase in the volume of the reaction will shift to the right and produce more moles of products. Also both reactants and products exist in the gaseous state and does not have equal number of moles.
Answer:
(a) Three translational degrees of freedom, 2 rotational degrees. 5 total
Cv = 5/2 R; Cp = 7/2 R
(b) and (c) 6 total degrees of freedom ( 3 translational, 3 rotational)
Cv = 3 R ; Cp = 4R
Explanation:
(a) O₂
Oxygen being a diatomic molecule has three translational degrees of freedom and two rotational degrees of freedom since it can move in the three axis and can rotate around two.
(b) H₂O
This is a polyatomic molecule and it has three translational and three rotational degrees of freedom.
(c) Same as water it has three translational degrees of freedom and three rotational degrees of freedom
To calculate the heat capacities we have to make use of the equipartition theorem which tell us that for each degree of freedom imparts 1/2 R to the heat capacity at constant volume.
(a)
5 total degrees of freedom ⇒ Cv = 5/2 R
Cp ( heat capacity at constant pressure) is determined from the relation
Cp - Cv = R
Cp = 7/2 R for O2 molecule
(b) and (c)
Total degrees of freedom 6
Cv = 3 R
Cp = 4 R
Here we are ignoring any contribution of the vibrational modes to the contribution of the heat capacities
Mostly water erosion. Snow melts at the top of mountains and trickles down a mountainside. This loosens and erodes rocks, leading to unstable stones.