1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Slav-nsk [51]
4 years ago
7

A home’s temperature is maintained at 25◦C by an AC system with a COP of 3.2 which cools outside air (38◦C with a 30°C Wet Bulb)

to 10 C and injects the cooled air into the home. The 25 C air exits the home. A) draw the process on the attached psychrometric chart. B) If the home gains 50,000 KJ/hr what is the required power in kW? C) How much water is condensed if any? D) Without changing the COP or the heat gain of the home what could be done to lower the power requirement of the AC system and what is the minimum power required?

Engineering
1 answer:
motikmotik4 years ago
3 0

Answer:

Detailed solution is given below:

You might be interested in
Which professional draws maps and plans for projects involving structures other than buildings, such as bridges?
kolbaska11 [484]

Answer:

I believe it is a civil drafter

Explanation:

O*NET site

3 0
4 years ago
Read 2 more answers
To begin manufacturing we would start with a piece of 48" x 96" x 1⁄2” plate, LIST 3 MACHINES that might be used to produce this
7nadin3 [17]

Answer:

search google for this!

Explanation:

i found it online

5 0
3 years ago
A short-circuit experiment is conducted on the high-voltage side of a 500 kVA, 2500 V/250 V, single-phase transformer in its nom
Anarel [89]

Given Information:

Primary secondary voltage ratio = 2500/250 V

Short circuit voltage = Vsc = 100 V

Short circuit current = Isc = 110 A

Short circuit power = Psc = 3200 W

Required Information:

Series impedance = Zeq = ?

Answer:

Series impedance = 0.00264 + j0.00869 Ω

Step-by-step explanation:

Short Circuit Test:

A short circuit is performed on a transformer to find out the series parameters (Z = Req and jXeq) which in turn are used to find out the copper losses of the transformer.

The series impedance in polar form is given by

Zeq = Vsc/Isc < θ

Where θ is given by

θ = cos⁻¹(Psc/Vsc*Isc)

θ = cos⁻¹(3200/100*110)

θ = 73.08°

Therefore, series impedance in polar form is

Zeq = 100/110 < 73.08°

Zeq = 0.909 < 73.08° Ω

or in rectangular form

Zeq = 0.264 + j0.869 Ω

Where Req is the real part of Zeq  and Xeq is the imaginary part of Zeq

Req = 0.264 Ω

Xeq = j0.869 Ω

To refer the impedance of transformer to its low voltage side first find the turn ratio of the transformer.

Turn ratio = a = Vp/Vs = 2500/250 =  10

Zeq2 = Zeq/a²

Zeq2 = (0.264 + j0.869)/10²

Zeq2 = (0.264 + j0.869)/100

Zeq2 = 0.00264 + j0.00869 Ω

Therefore, Zeq2 = 0.00264 + j0.00869 Ω is the series impedance of the transformer referred to its low voltage side.

4 0
3 years ago
If a seat could sit on a chair would a chair be able to sit on a seat?
mars1129 [50]

Answer:

no

Explanation:

a seat goes on a chair and never goes off. also the chairs legs are to wide to sit on a seat.

5 0
3 years ago
Read 2 more answers
An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 278C, and 75
Inessa [10]

Answer:

(a). The value of temperature at the end of heat addition process            T_{3} = 2042.56 K

(b). The value of pressure at the end of heat addition process                    P_{3} = 1555.46 k pa

(c). The thermal efficiency of an Otto cycle   E_{otto} = 0.4478

(d). The value of mean effective pressure of the cycle P_{m} = 1506.41 \frac{k pa}{kg}

Explanation:

Compression ratio r_{p} = 8

Initial pressure P_{1} = 95 k pa

Initial temperature T_{1} = 278 °c = 551 K

Final pressure P_{2} = 8 × P_{1} = 8 × 95 = 760 k pa

Final temperature T_{2} = T_{1} × r_{p} ^{\frac{\gamma - 1}{\gamma} }

Final temperature T_{2} = 551 × 8 ^{\frac{1.4 - 1}{1.4} }

Final temperature T_{2} = 998 K

Heat transferred at constant volume Q = 750 \frac{KJ}{kg}

(a). We know that Heat transferred at constant volume Q_{S} = m C_{v} ( T_{3} - T_{2}  )

⇒ 1 × 0.718 × ( T_{3} - 998 ) = 750

⇒ T_{3} = 2042.56 K

This is the value of temperature at the end of heat addition process.

Since heat addition is constant volume process. so for that process pressure is directly proportional to the temperature.

⇒ P ∝ T

⇒ \frac{P_{3} }{P_{2} } = \frac{T_{3} }{T_{2} }

⇒ P_{3} = \frac{2042.56}{998} × 760

⇒ P_{3} = 1555.46 k pa

This is the value of pressure at the end of heat addition process.

(b). Heat rejected from the cycle Q_{R} = m C_{v} ( T_{4} - T_{1}  )

For the compression and expansion process,

⇒ \frac{T_{3} }{T_{2} } = \frac{T_{4} }{T_{1} }

⇒ \frac{2042.56}{998} = \frac{T_{4} }{551}

⇒ T_{4} = 1127.7 K

Heat rejected Q_{R} = 1 × 0.718 × ( 1127.7 - 551)

⇒ Q_{R} = 414.07 \frac{KJ}{kg}

Net heat interaction from the cycle Q_{net} = Q_{S} - Q_{R}

Put the values of Q_{S} & Q_{R}  we get,

⇒ Q_{net} = 750 - 414.07

⇒ Q_{net} = 335.93 \frac{KJ}{kg}

We know that for a cyclic process net heat interaction is equal to net work transfer.

⇒ Q_{net} = W_{net}

⇒ W_{net} = 335.93 \frac{KJ}{kg}

This is the net work output from the cycle.

(c). Thermal efficiency of an Otto cycle is given by

E_{otto} = 1- \frac{T_{1} }{T_{2} }

Put the values of T_{1} & T_{2} in the above formula we get,

E_{otto} = 1- \frac{551 }{998 }

⇒ E_{otto} = 0.4478

This is the thermal efficiency of an Otto cycle.

(d). Mean effective pressure P_{m} :-

We know that mean effective pressure of  the Otto cycle is  given by

P_{m} = \frac{W_{net} }{V_{s} } ---------- (1)

where V_{s} is the swept volume.

V_{s} = V_{1}  - V_{2} ---------- ( 2 )

From ideal gas equation P_{1} V_{1} = m × R × T_{1}

Put all the values in above formula we get,

⇒ 95 × V_{1} = 1 × 0.287 × 551

⇒ V_{1} = 0.6 m^{3}

From the same ideal gas equation

P_{2} V_{2} = m × R × T_{2}

⇒ 760 × V_{2} = 1 × 0.287 × 998

⇒ V_{2} = 0.377 m^{3}

Thus swept volume V_{s} = 0.6 - 0.377

⇒ V_{s} = 0.223 m^{3}

Thus from equation 1 the mean effective pressure

⇒ P_{m} = \frac{335.93}{0.223}

⇒ P_{m} = 1506.41 \frac{k pa}{kg}

This is the value of mean effective pressure of the cycle.

4 0
3 years ago
Other questions:
  • What is the composition, in atom percent, of an alloy that contains 44.5 lbmof Ag, 83.7 lbmof Au, and 5.3 lbmof Cu? What is the
    9·1 answer
  • For laminar flow over a flat plate, the local heat transfer coefficient hx is known to vary as x−1/2, where x is the distance fr
    12·1 answer
  • Water at 15°C is to be discharged from a reservoir at a rate of 18 L/s using two horizontal cast iron pipes connected in series
    6·1 answer
  • A completely mixed activated-sludge process is being designed for a wastewater flow of 10,000 m3/d (2.64 mgd) using the kinetics
    6·1 answer
  • When designing solid rockets, thrust and mass flow must be considered time dependent. a) True b) False
    9·1 answer
  • The wall of drying oven is constructed by sandwiching insulation material of thermal conductivity k = 0.05 W/m°K between thin me
    8·1 answer
  • For Figure Below, if the elevation of the benchmark A is 25.00 m above MSL:
    14·1 answer
  • Please help ASAP!!
    13·2 answers
  • A. Briefly describe the microstructural difference between spheroidite and tempered martensite. Explain why tempered martensite
    14·1 answer
  • On a supply and demand graph, equilibrium is the point where
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!