1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Klio2033 [76]
3 years ago
6

An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 278C, and 75

0 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat- addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle
Engineering
1 answer:
Inessa [10]3 years ago
4 0

Answer:

(a). The value of temperature at the end of heat addition process            T_{3} = 2042.56 K

(b). The value of pressure at the end of heat addition process                    P_{3} = 1555.46 k pa

(c). The thermal efficiency of an Otto cycle   E_{otto} = 0.4478

(d). The value of mean effective pressure of the cycle P_{m} = 1506.41 \frac{k pa}{kg}

Explanation:

Compression ratio r_{p} = 8

Initial pressure P_{1} = 95 k pa

Initial temperature T_{1} = 278 °c = 551 K

Final pressure P_{2} = 8 × P_{1} = 8 × 95 = 760 k pa

Final temperature T_{2} = T_{1} × r_{p} ^{\frac{\gamma - 1}{\gamma} }

Final temperature T_{2} = 551 × 8 ^{\frac{1.4 - 1}{1.4} }

Final temperature T_{2} = 998 K

Heat transferred at constant volume Q = 750 \frac{KJ}{kg}

(a). We know that Heat transferred at constant volume Q_{S} = m C_{v} ( T_{3} - T_{2}  )

⇒ 1 × 0.718 × ( T_{3} - 998 ) = 750

⇒ T_{3} = 2042.56 K

This is the value of temperature at the end of heat addition process.

Since heat addition is constant volume process. so for that process pressure is directly proportional to the temperature.

⇒ P ∝ T

⇒ \frac{P_{3} }{P_{2} } = \frac{T_{3} }{T_{2} }

⇒ P_{3} = \frac{2042.56}{998} × 760

⇒ P_{3} = 1555.46 k pa

This is the value of pressure at the end of heat addition process.

(b). Heat rejected from the cycle Q_{R} = m C_{v} ( T_{4} - T_{1}  )

For the compression and expansion process,

⇒ \frac{T_{3} }{T_{2} } = \frac{T_{4} }{T_{1} }

⇒ \frac{2042.56}{998} = \frac{T_{4} }{551}

⇒ T_{4} = 1127.7 K

Heat rejected Q_{R} = 1 × 0.718 × ( 1127.7 - 551)

⇒ Q_{R} = 414.07 \frac{KJ}{kg}

Net heat interaction from the cycle Q_{net} = Q_{S} - Q_{R}

Put the values of Q_{S} & Q_{R}  we get,

⇒ Q_{net} = 750 - 414.07

⇒ Q_{net} = 335.93 \frac{KJ}{kg}

We know that for a cyclic process net heat interaction is equal to net work transfer.

⇒ Q_{net} = W_{net}

⇒ W_{net} = 335.93 \frac{KJ}{kg}

This is the net work output from the cycle.

(c). Thermal efficiency of an Otto cycle is given by

E_{otto} = 1- \frac{T_{1} }{T_{2} }

Put the values of T_{1} & T_{2} in the above formula we get,

E_{otto} = 1- \frac{551 }{998 }

⇒ E_{otto} = 0.4478

This is the thermal efficiency of an Otto cycle.

(d). Mean effective pressure P_{m} :-

We know that mean effective pressure of  the Otto cycle is  given by

P_{m} = \frac{W_{net} }{V_{s} } ---------- (1)

where V_{s} is the swept volume.

V_{s} = V_{1}  - V_{2} ---------- ( 2 )

From ideal gas equation P_{1} V_{1} = m × R × T_{1}

Put all the values in above formula we get,

⇒ 95 × V_{1} = 1 × 0.287 × 551

⇒ V_{1} = 0.6 m^{3}

From the same ideal gas equation

P_{2} V_{2} = m × R × T_{2}

⇒ 760 × V_{2} = 1 × 0.287 × 998

⇒ V_{2} = 0.377 m^{3}

Thus swept volume V_{s} = 0.6 - 0.377

⇒ V_{s} = 0.223 m^{3}

Thus from equation 1 the mean effective pressure

⇒ P_{m} = \frac{335.93}{0.223}

⇒ P_{m} = 1506.41 \frac{k pa}{kg}

This is the value of mean effective pressure of the cycle.

You might be interested in
(a) Design a lag compensation to meet the following specifications: The step response settling time is to be less than 5 sec, th
Pavlova-9 [17]

Answer:

Please see the attached file for the complete answer.

Explanation:

Download pdf
4 0
3 years ago
What do you think will happen to the demand curve if there is a sudden surplus for a certain commodity?​
schepotkina [342]

Answer:

the curve will flatten due to the supply and demand theory.

7 0
3 years ago
Calculate the line parameters ????′, ????′, ????′, and ????′ for a coaxial line with an inner conductor diameter of 0.5 cm and a
kati45 [8]

Answer:

attached below

Explanation:

6 0
3 years ago
A search will start from a visual lead<br> true<br> false
BlackZzzverrR [31]
True

An organized searching process will need to start from the visual lead area. Eye focus and eye movements from the path of travel in an organized pattern describes a visual search process.
4 0
2 years ago
Read 2 more answers
High speed increases the risk of collision because of ALL of these things EXCEPT:
Fofino [41]

Answer:

visibility is increased

3 0
3 years ago
Other questions:
  • 4.
    6·2 answers
  • When mining diamonds with a stone pick what will be the outcome
    5·2 answers
  • Technician A says a basic circuit problem can be caused by something in the circuit that increases voltage. Technician B says a
    8·1 answer
  • What is a two stroke engine and what is a four stroke engine, please keep the definitions as simple as can be and please explain
    8·2 answers
  • What prevented this weld from becoming ropey?
    13·2 answers
  • Different metabolic control systems have different characteristic time scales for a control response to be achieved. Match the t
    6·1 answer
  • PLZZ HELP
    14·2 answers
  • (a) calculate the moment at point "c", where point "c" is the square 3'' below the centroid
    13·1 answer
  • What subject is he......... now? Vietnamese.A. to learnB. learnC. learningD. learned
    10·1 answer
  • As a worker in this field you would:
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!