Answer:
true because BCD used 6 bits to represent a symbol .
Explanation:
mark me brainlist
Answer:
R = ![\left[\begin{array}{ccc}1&0&0\\0&cos30&-sin30\\0&sin30&cos30\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%26cos30%26-sin30%5C%5C0%26sin30%26cos30%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}cos 60&-sin60&0\\sin60&cos60&60\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%2060%26-sin60%260%5C%5Csin60%26cos60%2660%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
Explanation:
The mappings always involve a translation and a rotation of the matrix. Therefore, the rotation matrix will be given by:
Let
and
be the the angles 60⁰ and 30⁰ respectively
that is
= 60⁰ and
= 30⁰
The matrix is given by the following expression:
![\left[\begin{array}{ccc}1&0&0\\0&cos30&-sin30\\0&sin30&cos30\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%260%5C%5C0%26cos30%26-sin30%5C%5C0%26sin30%26cos30%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}cos 60&-sin60&0\\sin60&cos60&60\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%2060%26-sin60%260%5C%5Csin60%26cos60%2660%5C0%260%261%5Cend%7Barray%7D%5Cright%5D)
The angles can be evaluated and left in the surd form.
Based on the information, both technician A and technician B are correct.
<h3>How to depict the information?</h3>
From the information given, Technician A says that mechanical shifting controls can wear out over time.
Technician B says that vacuum control rubber diaphragms can deteriorate over time.
In this case, both technicians are correct as the information depicted is true.
Learn more about technicians on:
brainly.com/question/1548867
#SPJ12
Given:
diameter of sphere, d = 6 inches
radius of sphere, r =
= 3 inches
density,
= 493 lbm/ 
S.G = 1.0027
g = 9.8 m/
= 386.22 inch/ 
Solution:
Using the formula for terminal velocity,
=
(1)

where,
V = volume of sphere
= drag coefficient
Now,
Surface area of sphere, A = 
Volume of sphere, V = 
Using the above formulae in eqn (1):
= 
=
= 
Therefore, terminal velcity is given by:
=
inch/sec