Answer:
CARBON
Explanation:
HOPE THIS HELPS SORRY FOR CAPS
Answer:
(1). False, (2). True, (3). False, (4). False, (5). True.
Explanation:
The term ''contouring'' in this question does not have to do with makeup but it has to deal with the measurement of all surfaces in planes. It is a measurement in which the rough and the contours are being measured. So, let us check each questions again.
(1). In contouring, it is necessary to measure position and not velocity for feedback.
ANSWER : b =>False. IT IS NECESSARY TO MEASURE BOTH FOR FEEDBACK.
(2). In contouring during 2-axis NC machining, the two axes are moved at the same speed to achieve the desired contour.
ANSWER: a=> True.
(3). Job shop is another term for process layout.
ANSWER: b => False
JOB SHOP IS A FLEXIBLE PROCESS THAT IS BEING USED during manufacturing process and are meant for job Production. PROCESS LAYOUT is used in increasing Efficiency.
(4). Airplanes are normally produced using group technology or cellular layout.
ANSWER: b => False.
(5). In manufacturing, value-creating time is greater than takt time.
ANSWER: a => True.
Answer:
The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C
Explanation:
The properties of water at 100°C and 1 atm are:
pL = 957.9 kg/m³
pV = 0.596 kg/m³
ΔHL = 2257 kJ/kg
CpL = 4.217 kJ/kg K
uL = 279x10⁻⁶Ns/m²
KL = 0.68 W/m K
σ = 58.9x10³N/m
When the water boils on the surface its heat flux is:

For copper-water, the properties are:
Cfg = 0.0128
The heat flux is:
qn = 0.9 * 18703.42 = 16833.078 W/m²

The tube surface temperature immediately after installation is:
Tinst = 100 + 20.4 = 120.4°C
For rough surfaces, Cfg = 0.0068. Using the same equation:
ΔT = 10.8°C
The tube surface temperature after prolonged service is:
Tprolo = 100 + 10.8 = 110.8°C
Answer:
1) 
2) 
Explanation:
For isothermal process n =1

![V_o = \frac{5}{[\frac{72}{80}]^{1/1} -[\frac{72}{180}]^{1/1}}](https://tex.z-dn.net/?f=V_o%20%20%3D%20%5Cfrac%7B5%7D%7B%5B%5Cfrac%7B72%7D%7B80%7D%5D%5E%7B1%2F1%7D%20-%5B%5Cfrac%7B72%7D%7B180%7D%5D%5E%7B1%2F1%7D%7D)

calculate pressure ratio to determine correction factor

correction factor for calculate dpressure ration for isothermal process is
c1 = 1.03

b) for adiabatic process
n =1.4
volume of hydraulic accumulator is given as
![V_o =\frac{\Delta V}{[\frac{p_o}{p_1}]^{1/n} -[\frac{p_o}{p_2}]^{1/n}}](https://tex.z-dn.net/?f=V_o%20%3D%5Cfrac%7B%5CDelta%20V%7D%7B%5B%5Cfrac%7Bp_o%7D%7Bp_1%7D%5D%5E%7B1%2Fn%7D%20-%5B%5Cfrac%7Bp_o%7D%7Bp_2%7D%5D%5E%7B1%2Fn%7D%7D)
![V_o = \frac{5}{[\frac{72}{80}]^{1/1.4} -[\frac{72}{180}]^{1/1.4}}](https://tex.z-dn.net/?f=V_o%20%20%3D%20%5Cfrac%7B5%7D%7B%5B%5Cfrac%7B72%7D%7B80%7D%5D%5E%7B1%2F1.4%7D%20-%5B%5Cfrac%7B72%7D%7B180%7D%5D%5E%7B1%2F1.4%7D%7D)

calculate pressure ratio to determine correction factor

correction factor for calculate dpressure ration for isothermal process is
c1 = 1.15
