Answer:
The solution is shown in the graph.
x= 2.3
y= 4.3
Answer:
Three cubes
Step-by-step explanation:
The cubes have to be indistinguishable and all orientations of one cube are also have to be indistinguishable.
All ways of connecting two cubes result in the same shape. So answer is larger than two.
After connecting two cubes, there are ten faces where the third cube can be attached, and two faces which are connected, accounting for all 12 faces of two cubes.
Of the 10 exposed faces, exactly two are on opposite ends, both leading to the same straight line figure. The other 8 faces all lead to an L shape, and all L shapes can be rotated to be identical.
Hence, three cubes can only make a straight shape or an angled shape.
Four cubes can make a straight shape, a L shape, a Γ shape (but flipping it over through 3 dimensions makes L and Γ identical), a T shape, and a square shape. That is either four or five different objects depending on if they can be lifted from the table. Anyway, it is more than two.
90 x 0.4 = 36
90 - 36 = 54
The sale price is $54
Answer:
Cleanser that costs 50 cents is 1400 liters, Cleanser that costs 80 cents is 600 liters.
Step-by-step explanation:
We can solve this by using <em>simultaneous equations</em>:
- Let us express the question in terms of equations
Let a be cleanser at 50 cents and let b be the cleanser at 80 cents.
Equation 1: 0.5a + 0.8b = 0.59(a+b)
Equation 2: a + b = 2000
From equation 2, a = 2000 - b (Let's call this equation 3)
2. Substituting equations 2 and 3 in Equation 1:
0.5a + 0.8b = 0.59(a+b)
0.5(2000 - b) + 0.8b = 0.59(2000)
1000 - 0.5b + 0.8b = 1180
0.3b = 180
b = 600
Substitute in equation 3:
a = 2000 - 600
a = 1400
As a note, I formed equation 1 because I know for a fact the cost per liter of a and b. I also know it is sold at 0.59 cents per liter. We are selling 2000 liters in this instance, therefore 0.59(2000) = 1180, which in this case is the selling price.
Answer:
30 miles
Step-by-step explanation:
In this context, "per" means "divided by", so to find miles per gallon, divide miles by gallons:
(56 1/4 mi)/(1 7/8 gal) = 30 mi/gal
The vehicle can travel 30 miles per gallon of gas.
_____
My calculator divides mixed numbers directly, as many graphing calculators do. If you're working this out by hand, you can convert to improper fractions, then multiply the numerator by the inverse of the denominator.
(56 1/4)/(1 7/8) = (225/4)/(15/8)
= (225/4)·(8/15) = (225/15)·(8/4)
= 15·2 = 30