Answer:
Part 1: Write mathematical equations of sinusoids.
1. The following sinusoid is plotted below. Complete the following steps to model the curve using the cosine function.
a) What is the phase shift, c, of this curve? (2 points)
b) What is the vertical shift, d, of this curve? (2 points)
c) What is the amplitude, a, of this curve? (2 points)
d) What is the period and the frequency factor, b, of this curve? (2 points
e) Write an equation using the cosine function that models this data set. (5 points)
2. The following points are a minimum and a maximum of a sinusoid. Complete the following steps to
model the curve using the sine function
Step-by-step explanation:
<em> </em><em>p</em><em>l</em><em>z</em><em> </em><em>f</em><em>o</em><em>l</em><em>o</em><em>w</em><em> </em><em>m</em><em>e</em>
Answer:
No, we can't determine how many coins Jada has.
She will have 22 pennies and 33 dimes.
Answer:
43.
Step-by-step explanation:
Follow PEMDAS (Parentheses, exponents, multiply, divide, add, subtract). First you do 8-4 which is 4, then you multiply 4 by 4 which is 16 since you multiply next, then you add 27 to 16 which then gets you to 43.

we don't have solutions !!
Check the picture below.
based on the equation, if we set y = 0, we'd end up with 0 = 0.5(x-3)(x-k).
and that will give us two x-intercepts, at x = 3 and x = k.
since the triangle is made by the x-intercepts and y-intercepts, then the parabola most likely has another x-intercept on the negative side of the x-axis, as you see in the picture, so chances are "k" is a negative value.
now, notice the picture, those intercepts make a triangle with a base = 3 + k, and height = y, where "y" is on the negative side.
let's find the y-intercept by setting x = 0 now,
![\bf y=0.5(x-3)(x+k)\implies y=\cfrac{1}{2}(x-3)(x+k)\implies \stackrel{\textit{setting x = 0}}{y=\cfrac{1}{2}(0-3)(0+k)} \\\\\\ y=\cfrac{1}{2}(-3)(k)\implies \boxed{y=-\cfrac{3k}{2}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of a triangle}}{A=\cfrac{1}{2}bh}~~ \begin{cases} b=3+k\\ h=y\\ \quad -\frac{3k}{2}\\ A=1.5\\ \qquad \frac{3}{2} \end{cases}\implies \cfrac{3}{2}=\cfrac{1}{2}(3+k)\left(-\cfrac{3k}{2} \right)](https://tex.z-dn.net/?f=%5Cbf%20y%3D0.5%28x-3%29%28x%2Bk%29%5Cimplies%20y%3D%5Ccfrac%7B1%7D%7B2%7D%28x-3%29%28x%2Bk%29%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bsetting%20x%20%3D%200%7D%7D%7By%3D%5Ccfrac%7B1%7D%7B2%7D%280-3%29%280%2Bk%29%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7B1%7D%7B2%7D%28-3%29%28k%29%5Cimplies%20%5Cboxed%7By%3D-%5Ccfrac%7B3k%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20a%20triangle%7D%7D%7BA%3D%5Ccfrac%7B1%7D%7B2%7Dbh%7D~~%20%5Cbegin%7Bcases%7D%20b%3D3%2Bk%5C%5C%20h%3Dy%5C%5C%20%5Cquad%20-%5Cfrac%7B3k%7D%7B2%7D%5C%5C%20A%3D1.5%5C%5C%20%5Cqquad%20%5Cfrac%7B3%7D%7B2%7D%20%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B3%7D%7B2%7D%3D%5Ccfrac%7B1%7D%7B2%7D%283%2Bk%29%5Cleft%28-%5Ccfrac%7B3k%7D%7B2%7D%20%5Cright%29)

now, we can plug those values on A = (1/2)bh,
![\bf \stackrel{\textit{using k = -2}}{A=\cfrac{1}{2}(3+k)\left(-\cfrac{3k}{2} \right)}\implies A=\cfrac{1}{2}(3-2)\left(-\cfrac{3(-2)}{2} \right)\implies A=\cfrac{1}{2}(1)(3) \\\\\\ A=\cfrac{3}{2}\implies A=1.5 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{using k = -1}}{A=\cfrac{1}{2}(3+k)\left(-\cfrac{3k}{2} \right)}\implies A=\cfrac{1}{2}(3-1)\left(-\cfrac{3(-1)}{2} \right) \\\\\\ A=\cfrac{1}{2}(2)\left( \cfrac{3}{2} \right)\implies A=\cfrac{3}{2}\implies A=1.5](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Busing%20k%20%3D%20-2%7D%7D%7BA%3D%5Ccfrac%7B1%7D%7B2%7D%283%2Bk%29%5Cleft%28-%5Ccfrac%7B3k%7D%7B2%7D%20%5Cright%29%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283-2%29%5Cleft%28-%5Ccfrac%7B3%28-2%29%7D%7B2%7D%20%5Cright%29%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%281%29%283%29%20%5C%5C%5C%5C%5C%5C%20A%3D%5Ccfrac%7B3%7D%7B2%7D%5Cimplies%20A%3D1.5%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20k%20%3D%20-1%7D%7D%7BA%3D%5Ccfrac%7B1%7D%7B2%7D%283%2Bk%29%5Cleft%28-%5Ccfrac%7B3k%7D%7B2%7D%20%5Cright%29%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283-1%29%5Cleft%28-%5Ccfrac%7B3%28-1%29%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7D%282%29%5Cleft%28%20%5Ccfrac%7B3%7D%7B2%7D%20%5Cright%29%5Cimplies%20A%3D%5Ccfrac%7B3%7D%7B2%7D%5Cimplies%20A%3D1.5)