180-50= 130 so x=130 or 360-100=260 then 260/2=130 so x=130
2(2)2(3)2(4)=192 because you're multiplying everything together in order to find your answer and also because the variables which are the letters represent the numbers that need to be multiplied idk if that made sense but that's the answer lol
Answer:
Step-by-step explanation:
Firstly, note that -2i really is just z = 0 + (-2)i, so we see that Re(z) = 0 and Im(z) = -2.
When we're going from Cartesian to polar coordinates, we need to be aware of a few things! With Cartesian coordinates, we are dealing explicitly with x = blah and y = blah. With polar coordinates, we are looking at the same plane but with angle and magnitude in consideration.
Graphing z = -2i on the Argand diagram will look like a segment of the y axis. So we ask ourselves "What angle does this make with the positive x axis? One answer you could ask yourself is -90°! But at the same time, it's 270°! Why do you think this is the case?
What about the magnitude? How far is "-2i" stretched from the typical "i". And the answer is -2! Well... really it gets stretched by a factor of 2 but in the negative direction!
Putting all of this together gives us:
z = |mag|*(cos(angle) + isin(angle))
= 2*cos(270°) + isin(270°)).
To verify, let's consider what cos(270°) and sin(270°) are.
If you graph cos(x) and look at 270°, you get 0.
If you graph sin(x) and look at 270°, you get -1.
So 2*(cos(270°) + isin(270°)) = 2(0 + -1*i) = -2i as expected.
Here are some that may help: 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8
Have a great night! Hope this helped!
Answer:
90.67% probability that John finds less than 7 golden sheets of paper
Step-by-step explanation:
For each container, there are only two possible outcomes. Either it contains a golden sheet of paper, or it does not. The probability of a container containing a golden sheet of paper is independent of other containers. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
At Munder Difflin Paper Company, the manager Mitchell Short randomly places golden sheets of paper inside of 30% of their paper containers.
This means that 
14 of these containers of paper.
This means that 
What is the probability that John finds less than 7 golden sheets of paper?

In which









90.67% probability that John finds less than 7 golden sheets of paper