Adenylate cyclases (ACs) are the membrane-bound glycoproteins that convert ATP to cAMP and pyrophosphate.
When activated by G-protein Gs, adenylate cyclases (ACs), which are membrane-bound glycoproteins, catalyze the synthesis of cAMP from ATP.
Different AC isoforms are widely expressed in various tissues that participate in regulatory systems in response to particular stimuli.
Humans have 9 different AC isoforms, with AC5 and AC6 thought to be particularly important for cardiac activities.
Nitric oxide has an impact on the activity of AC6, hence the protein's nitrosylation may control how it works. However, little is known about the structural variables that affect nitrosylation in ACs and how they relate to G's.
We predict the cysteines that are prone to nitrosylation using this 3D model, and we use virtual ligand screening to find potential new AC6 ligands.
According to our model, the AC-Gs interface's Cys174 in G's and Cys1004 in AC6 (subunit C2) are two potential residues that could experience reversible nitrosylation.
Learn more about glycoproteins here brainly.com/question/9507947
#SPJ4
Answer:
Acid rain is caused by a chemical reaction that begins when compounds like sulfur dioxide and nitrogen oxides are released into the air. These substances can rise very high into the atmosphere, where they mix and react with water, oxygen, and other chemicals to form more acidic pollutants, known as acid rain.
Herbivore; carnivore
A rabbit is an example of a herbivore while a hyena is an example of a carnivore.
A herbivore is an animal that obtain its energy by feeding mainly on plants (i.e. that eats no meat). Other examples of herbivores apart from rabbit are cows, sheep and insects. A carnivore is an animal that feeds on meat as the main parts of its diet. Other examples of carnivores apart from hyena are lions, coyotes, tigers and eagles.
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy between physical systems.