Answer: 4.22 grams of solute is there in 278 ml of 0.038 M 
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= volume of solution in L
Now put all the given values in the formula of molality, we get

mass of
= 
Thus 4.22 grams of solute is there in 278 ml of 0.038 M 
Answer: d. has high activation energy
Activation energy is the energy that a system requires to start a certain process. Also, it <u>is the minimum energy necessary for a given chemical reaction to occur</u>. For a reaction to occur between two molecules, they must collide in the correct orientation and have a minimum amount of energy equal to the activation energy.
As the molecules approach, their electron clouds repel, so energy is required for the collision to occur and therefore the reaction. The activation energy comes from the heat of the system, that is, the translational, vibrational energy, etc. of each molecule. However, if this energy is not enough, the reaction will not be spontaneous.
<u>A reaction between two molecules can be favored by supplying energy to the system.</u> In the case raised in the question, <u>energy equal to 1104 kJ is provided to the system to favor the next reaction
</u>
CO2 (g) + 2SO2 (g) → CS2 (g) + 3O2 (g)
<u>Since the energy equal to 1104 kJ is included in the reactants, it can be deduced that it is the energy that is provided to the system for the reaction to occur. </u>However, from the value of this energy it can not be said whether the system is endothermic or exothermic since it is a kinetic variable and the variables of this type do not allow predicting the thermodynamic behavior of a system.
Furthermore, it can be seen that the value of this energy is considerably high, therefore the reaction described has a high activation energy.
Answer:
Part A = The mass of sulfur is 6.228 grams
Part B = The mass of 1 silver atom is 1.79 * 10^-22 grams
Explanation:
Part A
Step 1: Data given
A mixture of carbon and sulfur has a mass of 9.0 g
Mass of the product = 27.1 grams
X = mass carbon
Y = mass sulfur
x + y = 9.0 grams
x = 9.0 - y
x(molar mass CO2/atomic mass C) + y(molar mass SO2/atomic mass S) = 22.6
(9 - y)*(44.01/12.01) + y(64.07/32.07)
(9-y)(3.664) + y(1.998)
32.976 - 3.664y + 1.998y = 22.6
-1.666y = -10.376
y = 6.228 = mass sulfur
x = 9.0 - 6.228 = 2.772 grams = mass C
The mass of sulfur is 6.228 grams
Part B
Calculate the mass, in grams, of a single silver atom (mAg = 107.87 amu ).
Calculate moles of 1 silver atom
Moles = 1/ 6.022*10^23
Moles = 1.66*10^-24 moles
Mass = moles * molar mass
Mass = 1.66*10 ^-24 moles *107.87
Mass = 1.79 * 10^-22 grams
The mass of 1 silver atom is 1.79 * 10^-22 grams
If the mass of both the reactants is 10kg then the mass of the products also equals 10kg.
It is due to the law of conservation of mass.
Mass can neither be created nor be destroyed.
An isotope of nitrogen containing 7 neutrons would be nitrogen-7