(f-g)(x) = f(x) - g(x)
= (x^3 -2x+6) - (2x^3+3x^2-4x+2)
= x^3 -2x +6 -2x^3 -3x^2 +4x -2 . . . . distribute the negative sign
= (1-2)x^3 -3x^2 +(-2+4)x +(6-2) . . . . . combine like terms
(f-g)(x) = -x^3 -3x^2 +2x +4
Answer:
D
Step-by-step explanation:
Can I have Brainliest? I hope this helped and have a nice day!!!
Work:
64 / 2 = 32
3/4 / 2 = 3/8
3/4 = 6/8
6/8 / 2 = 3/8
Final answer 32 3/8
These are just a few of the things you will learn in 6th grade. You will learn how to write a two- variable equation, how to identify the graph of an equation, graphing two-variable equations. how to interpret a graph and a word problem, and how to write an equation from a graph using a table, two-dimensional figures,Identify and classify polygons, Measure and classify angles,Estimate angle measurements, Classify triangles, Identify trapezoids, Classify quadrilaterals, Graph triangles and quadrilaterals, Find missing angles in triangles, and a lot more subjects. <span><span><span>Find missing angles in quadrilaterals
</span><span>Sums of angles in polygons
</span><span>Lines, line segments, and rays
</span><span>Name angles
</span><span>Complementary and supplementary angles
</span><span>Transversal of parallel lines
</span><span>Find lengths and measures of bisected line segments and angles
</span><span>Parts of a circle
</span><span>Central angles of circles</span></span>Symmetry and transformations
<span><span>Symmetry
</span><span>Reflection, rotation, and translation
</span><span>Translations: graph the image
</span><span>Reflections: graph the image
</span><span>Rotations: graph the image
</span><span>Similar and congruent figures
</span><span>Find side lengths of similar figures</span></span>Three-dimensional figures
<span><span>Identify polyhedra
</span><span>Which figure is being described
</span><span>Nets of three-dimensional figures
</span><span>Front, side, and top view</span></span>Geometric measurement
<span><span>Perimeter
</span><span>Area of rectangles and squares
</span><span>Area of triangles
</span><span>Area of parallelograms and trapezoids
</span><span>Area of quadrilaterals
</span><span>Area of compound figures
</span><span>Area between two rectangles
</span><span>Area between two triangles
</span><span>Rectangles: relationship between perimeter and area
</span><span>compare area and perimeter of two figures
</span><span>Circles: calculate area, circumference, radius, and diameter
</span><span>Circles: word problems
</span><span>Area between two circles
</span><span>Volume of cubes and rectangular prisms
</span><span>Surface area of cubes and rectangular prisms
</span><span>Volume and surface area of triangular prisms
</span><span>Volume and surface area of cylinders
</span><span>Relate volume and surface area
</span><span>Semicircles: calculate area, perimeter, radius, and diameter
</span><span>Quarter circles: calculate area, perimeter, and radius
</span><span>Area of compound figures with triangles, semicircles, and quarter circles</span></span>Data and graphs
<span><span>Interpret pictographs
</span><span>Create pictographs
</span><span>Interpret line plots
</span><span>Create line plots
</span><span>Create and interpret line plots with fractions
</span><span>Create frequency tables
</span><span>Interpret bar graphs
</span><span>Create bar graphs
</span><span>Interpret double bar graphs</span><span>
</span></span><span>
</span></span>
Answer:
A) 2.6 mm Hg
Step-by-step explanation:
Margin of error = critical value × standard error
ME = CV × SE
n > 30, so we can approximate CV with a normal distribution. At P = 94%, CV = 1.88.
SE = σ / √n
SE = 13.5 / √92
SE = 1.41
So the margin of error is:
ME = 1.88 × 1.41
ME = 2.6
Answer:
The square of a monomial is 
Step-by-step explanation:
Consider the provided monomial.

We need to Write the expression as a square of a monomial.
The above expression can be written as:



Hence, the square of a monomial is 