Answer:
The pH of the solution will be 7.53.
Explanation:
Dissociation constant of KClO=
Concentration of acid in 1 l= 0.30 M
Then in 200 ml = 
The concentration of acid, HClO=[acid]= 0.006 M
Concentration of salt in 1 L = 0.20 M
Then in 300 ml = 
The concentration of acid, KClO=[salt]= 0.006 M
The pH of the solution will be given by formula :
![pH=pK_{a}^o+\log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%5Eo%2B%5Clog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
![pH=-\log[2.8\times 10^{-8}]+\frac{[0.06 M]}{[0.06 M]}](https://tex.z-dn.net/?f=pH%3D-%5Clog%5B2.8%5Ctimes%2010%5E%7B-8%7D%5D%2B%5Cfrac%7B%5B0.06%20M%5D%7D%7B%5B0.06%20M%5D%7D)
The pH of the solution will be 7.53.
Answer:
According to the law of conservation of mass, the mass of reactants will be equal to the mass of the products.
Explanation:
Answer:
P=12.16 atm
Explanation:
Using the formula of ideal gas law:
PV = nRT
P= nRT/V
n= number of moles
R= Avogadro constant = 0.0821
T= Temperature in K => ºC + 273.15 K
P= (1.50 moles)(0.0821)( 296.15 K)/ 3.00L
P= 12.15
Answer:
KE = PE at half the table Height:
Explanation
AT ANY POINT IN THE BOOK'S FALL,
TOTAL E = PE +KE
THE TOTAL E IS CONSTANT
Before the book is pushed off, the total energy is potential
TOT E=PE =MGH
BEFORE THE BOOK HITS THE GROUND, THE TOTAL E IS KINETIC
TOT=KE = MVXV/2
WHEN KE = PE
KE+PE =<u> MGH (STARTING ENERGY SINCE E IS CONSERVED)</u>
<u>OR PE+ PE = MGH</u>
<u>OR MGH' + MGH' =MGH</u>
<u>OR 2H' =</u>H
H' (NEW HEIGHT) =H/2