1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bixtya [17]
3 years ago
7

When might a plot of ln[a] vs time not yield a straight line?

Chemistry
1 answer:
podryga [215]3 years ago
6 0
Considering a reaction:
A → B
The rate equation may be described as:
r = -k[A]ⁿ
Taking the natural log,
ln(r) = -nln([A]) + ln(k)
Therefore, the only time the graph of ln[A] vs time will be a straight line is when the order of the reaction is 0, meaning the reaction is independent of reactant concentration.
You might be interested in
draw the structure of two acyclic compounds with 3 or more carbons which exhibits one singlet in the 1H-NMR spectrum
loris [4]

Answer:

attached below

Explanation:

Structure of two acyclic compounds with 3 or more carbons that exhibits one singlet in 1H-NMR spectrum

a) Acetone CH₃COCH₃

Attached below is the structure

b) But-2-yne (CH₃C)₂

Attached below is the structure

5 0
3 years ago
If I initially have a gas at a pressure of 12 atm, a volume of 23 liters, and a temperature of 200 K and then I raise the pressu
mixas84 [53]

Answer:

The answer to your question is V2 = 29.6 l

Explanation:

Data

Pressure 1 = P1 = 12 atm

Volume 1 = V1 = 23 l

Temperature 1 = T1 = 200 °K

Pressure 2 = 14 atm

Volume 2 = V2 = =

Temperature 2 = T2 = 300°K

Process

1.- To solve this problem use the Combine gas law.

             P1V1/T1 = P2V2/T2

-Solve for V2

             V2 = P1V1T2 / T1P2

2.- Substitution

             V2 = (12)(23)(300) / (200)(14)

3.- Simplification

             V2 = 82800 / 2800

4.- Result

            V2 = 29.6 l

5 0
3 years ago
50.0 mL solution of 0.160 M potassium alaninate ( H 2 NC 2 H 5 CO 2 K ) is titrated with 0.160 M HCl . The p K a values for the
scZoUnD [109]

Answer:

a) 6.12

b) 1.87

Explanation:

At the onset of the equivalence point (i.e the first equivalence point); alaninate is being converted to alanine.

H_2NC_2H_5CO^-_2  +  H^+  ------>  H_3}^+NC_2H_5CO^-_2

1 mole of  alaninate react with 1 mole of acid to give 1 mole of alanine;

therefore 50.0 mL  of 0.160 M alaninate required 50.0 mL of 0.160M HCl to reach the first equivalence point.

The concentration of alanine can be gotten via  the following process as shown below;

[H_3}^+NC_2H_5CO^-_2] = \frac{initial moles of alaninate}{total volume}

[H_3}^+NC_2H_5CO^-_2] = \frac{(50.0mL)*(0.160M)}{(50.0mL+50.0mL)}

[H_3}^+NC_2H_5CO^-_2] = \frac{8}{100mL}

[H_3}^+NC_2H_5CO^-_2] = 0.08 M

Alanine serves as an intermediary form, however the concentration of H^+ and the pH can be determined as follows;

[H^+] = \sqrt{\frac{K_{a1}K_{a2}{[H_3}^+NC_2H_5CO^-_2]+K_{a1}K_w}{  K_{a1}{[H_3}^+NC_2H_5CO^-_2]  } }

[H^+] = \sqrt{\frac{ (10^{-pK_{a1})}(10^{-pK_{a2})}(0.08)+(10^{-pK_{a1})}(1.0*10^{-14})}  {(10^{-pK_{a1}})+(0.08)} }

[H^+] = \sqrt{\frac{ (10^{-2.344})(10^{-9.868})(0.08)+(10^{-2.344})(1.0*10^{-14})}  {(10^{-2.344})+(0.08)} }

[H^+] =  7.63*10^{-7}M

pH = - log [H^+]

pH = -log[7.63*10^{-7}]

pH= 6.12

Therefore, the pH of the first equivalent point = 6.12

b) At the second equivalence point; all alaninate is converted into protonated alanine.

H_2NC_2H_5CO^-_2    +  H^+     ----->   H^+_3NC_2H_5CO^-_2

H^+_3NC_2H_5CO^-_2    +  H^+     ----->   H^+_3NC_2H_5CO_2H

Here; we have a situation where 1 mole of alaninate react with 2 moles of acid to give 1 mole of protonated alanine;

Moreover, 50.0 mL of 0.160 M alaninate is needed to produce 100.0mL of 0.160 M HCl in order to achieve the second equivalence point.

Thus, the concentration of protonated alanine can be determined as:

[H^+_3NC_2H_5CO_2H] = \frac{initial moles of alaninate}{total volume}

[H^+_3NC_2H_5CO_2H] = \frac{(50.0mL)*(0.160M)}{(50.0mL+100.0mL)}

[H^+_3NC_2H_5CO_2H] = \frac{8}{150}

[H^+_3NC_2H_5CO_2H] = 0.053 M

The pH at the second equivalence point can be calculated via the dissociation of protonated alanine at equilibrium which is represented as:

H^+_3NC_2H_5CO_2H        ⇄        H^+_3NC_2H_5CO^-_2    +  H^+

(0.053 - x)                                  x                             x

K_{a1} = \frac{[H^+] [H^+_3NC_2H_5CO^-_2]}{[H^+_3NC_2H_5CO_2H]}

10^{-PK_{a1}} = \frac{x*x}{(0.053-x)}

10^{-2.344} =\frac{x^2}{(0.053-x)}

0.00453 = \frac{x^2}{(0.053-x)}

0.00453(0.053-x) =x^2

x^2+0.00453x-(2.4009*10^{-4})

Using quadratic equation formula;

\frac{-b+/-\sqrt{b^2-4ac} }{2a}

we have:

\frac{-0.00453+\sqrt{(0.00453)^2-4(1)(-2.4009*10^{-4})} }{2(1)} OR \frac{-0.00453-\sqrt{(0.00453)^2-4(1)(-2.4009*10^{-4})} }{2(1)}

= 0.0134                    OR                -0.0179

So; we go by the positive integer which says

x = 0.0134

So [H^+]=[H_3^+NC_2H_5CO^-_2]= 0.0134 M

pH = -log[H^+]

pH = -log[0.0134]

pH = 1.87

Thus, the pH of the second equivalent point = 1.87

3 0
3 years ago
What element in magma is most abundant
pishuonlain [190]
Oxygen :) hope it helped
6 0
3 years ago
Read 2 more answers
In the best Lewis structure for the fulminate ion, CNO–, what is the formal charge on the central nitrogen atom?
Andrews [41]

Answer : The formal charge on the central nitrogen atom is, (+1)

Explanation :

Resonance structure : Resonance structure is an alternating method or way of drawing a Lewis-dot structure for a compound.

Resonance structure is defined as any of two or more possible structures of the compound. These structures have the identical geometry but have different arrangements of the paired electrons. Thus, we can say that the resonating structure are just the way of representing the same molecule.

First we have to determine the Lewis-dot structure of CNO^-.

Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.

In the Lewis-dot structure the valance electrons are shown by 'dot'.

The given molecule is, CNO^-

As we know that carbon has '4' valence electrons, nitrogen has '5' valence electrons and oxygen has '6' valence electrons.

Therefore, the total number of valence electrons in CNO^- = 4 + 5 + 6 + 1= 16

According to Lewis-dot structure, there are 8 number of bonding electrons and 8 number of non-bonding electrons.

Now we have to determine the formal charge for each atom.

Formula for formal charge :

\text{Formal charge}=\text{Valence electrons}-\text{Non-bonding electrons}-\frac{\text{Bonding electrons}}{2}

For structure 1 :

\text{Formal charge on O}=6-6-\frac{2}{2}=-1

\text{Formal charge on C}=4-2-\frac{6}{2}=-1

\text{Formal charge on N}=5-0-\frac{8}{2}=+1

For structure 2 :

\text{Formal charge on O}=6-4-\frac{4}{2}=0

\text{Formal charge on C}=4-4-\frac{4}{2}=-2

\text{Formal charge on N}=5-0-\frac{8}{2}=+1

For structure 3 :

\text{Formal charge on O}=6-2-\frac{6}{2}=+1

\text{Formal charge on C}=4-6-\frac{2}{2}=-3

\text{Formal charge on N}=5-0-\frac{8}{2}=+1

The best Lewis-dot structure is, structure 1.

Thus, the formal charge on the central nitrogen atom is, (+1)

3 0
3 years ago
Other questions:
  • Egg white, marshmallow, and smoke from a smokestack are examples of _____. suspensions colloids solutions
    14·1 answer
  • What is conditional reflexes?? ​
    5·1 answer
  • An ionic compound is
    15·2 answers
  • What is the mass of 1.32 mol carbon tetrafloride
    6·1 answer
  • Is the only known planet that is able to support living organisms.
    6·2 answers
  • Which of the following is the correct ( unbalanced) equation for the reaction that takes place when solid phosphorus combines wi
    12·1 answer
  • Which is the electron configuration for nobelium (No)?
    9·2 answers
  • What does your immune system do? a. makes you sick b. keep your brain sharp c. protect you from illness d. make energy for your
    15·2 answers
  • 18.The average or small size stars become a _________ at the end of their life cycle.
    12·1 answer
  • Please refer to image please
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!