Answer:
The value is 
Explanation:
From the question we are told that
The equation is 
The temperature is ![T = 25^oC = 298 K [room \ temperature ]](https://tex.z-dn.net/?f=%20T%20%3D%2025%5EoC%20%3D%20%20298%20K%20%20%20%5Broom%20%20%5C%20temperature%20%5D)
The emf at standard condition is 
Generally at the cathode

At the anode

Generally for an electrochemical reaction, at room temperature the Gibbs free energy is mathematically represented as

Here n is the no of electron with value n = 6
F is the Faraday's constant with value 96487 J/V
=>
=> 
This Gibbs free energy can also be represented mathematically as

Here R is the cell constant with value 8.314J/K
K is the equilibrium constant
From above
=> 
Generally antilog = 2.718
=>
=> 
Answer:
See explanation
Explanation:
A balanced chemical reaction equation has the same number of atoms of each element on both sides of the reaction equation.
Hence, for the reaction between KOH and H2SO4, the balanced chemical reaction equation is;
H2SO4(aq) + 2KOH(aq) ---------> K2SO4(aq) + 2H2O(l)
Complete ionic equation;
2H^+(aq) + SO4^2-(aq) + 2K^+(aq) +2OH^-(aq) -------> SO4^2-(aq) + 2K^+(aq) + 2H2O(l)
Net ionic equation;
2H^+(aq) + 2OH^-(aq) -------> 2H2O(l)
The answer is Ra
Atomic number for Be is 4
Atomic number for Mg 12
Atomic number for Ra 88
Atomic number for Ba 56
Answer : The final pressure of the gas will be, 26.8 kPa
Explanation :
According to the Boyle's law, the pressure of the gas is inversely proportional to the volume of the gas at constant temperature of the gas and the number of moles of gas.

or,

or,

where,
= initial pressure of the gas = 209 kPa
= final pressure of the gas = ?
= initial volume of the gas = 10.0 L
= final volume of the gas = 78.0 L
Now put all the given values in this formula, we get the final pressure of the gas.


Therefore, the final pressure of the gas will be, 26.8 kPa