Molar mass
C₂H₄O₂ = 60.0 g/mol
n = mass / molar mass
3.00 = mass / 60.0
m = 3.00 * 60.0
m = 180 g of <span>C₂H₄O₂
hope this helps!</span>
Answer:
Percent error = 25%
Explanation:
Given data:
Measured density of water = 1.25 g/mL
Accepted density value of water = 1 g/mL
Percent error = ?
Solution:
Formula:
Percent error = (measured value - accepted value / accepted value) × 100
Now we will put the values in formula:
Percent error = (1.25 g/mL - 1 g/mL /1 g/mL )× 100
Percent error = (0.25 g/mL /1 g/mL )× 100
Percent error = 0.25 × 100
Percent error = 25%
4
N
a
+
O
2
→
2
N
a
2
O
.
By the stoichiometry of this reaction if 5 mol natrium react, then 2.5 mol
N
a
2
O
should result.
Explanation:
The molecular mass of natrium oxide is
61.98
g
⋅
m
o
l
−
1
. If
5
m
o
l
natrium react, then
5
2
m
o
l
×
61.98
g
⋅
m
o
l
−
1
=
154.95
g
natrium oxide should result.
So what have I done here? First, I had a balanced chemical equation (this is the important step; is it balanced?). Then I used the stoichiometry to get the molar quantity of product, and converted this molar quantity to mass. If this is not clear, I am willing to have another go
Answer: C.)
Explanation:
i got it right on a unit test!
but it might be something else if there arranged different!
sorry!