Explanation:
According to the ideal gas equation, PV = nRT.
where, P = pressure, V = volume
n = no. of moles, R = gas constant
T = temperature
Also, density is equal to mass divided by volume. And, no. of moles equals mass divided by molar mass.
Therefore, then formula for ideal gas could also be as follows.
P = 
or, P = 
Since, density is given as 0.789 g/ml which is also equal to 789 g/L (as 1000 mL = 1 L). Hence, putting the given values into the above formula as follows.
P = 
= 
= 525 atm
As two-liter soft drink bottle can withstand a pressure of 5 atm and the value of calculated pressure is 525 atm which is much greater than 5 atm.
Therefore, the soft drink bottle will obviously explode.
11 × 44 = 484 g
mol × molar mass
Answer:
The O atom will tend to attract the electrons.
Explanation:
The electronegativity of O (3.5) is much higher than H (2.1), which means it is more likely to attract electrons. The higher the electronegativity, the more attractive.
Sound waves are waves of growing larger and smaller, making it seem elastic through substances, such as air.
Formic acid when in water would dissociate into ions just like any acids. It would dissociate into the hydrogen ion and the formate ion. The equilibrium dissociation equation would be written as:
<span>HCOOH (aq) + H2O (l) ⇌ H+ (aq) + HCOO- (aq)
Formic acid is a weak acid which means that when in aqueous solution it does not completely dissociate into its corresponding ions. Only a certain amount that would be dissociated so in the solution there will be HCOOH, HCOO- and H+ molecules. It is also known as Methanoic acid and an important substance for the synthesis of a number of substances. It is naturally occurring in ants.</span>