a. A dam is usually built at the site of hydroelectric power. As water accumulates, its potential power for producing electric power increases. As this water moves downstream from the dam, mostly through a fall, its kinetic energy is harnessed by turbines and converted to electric energy.
b. One factor is the height of the fall of the water from the dam. The higher the height the higher the kinetic energy of the water and hence can be converted to higher electric energy. The higher the number of coils of the turbine generator being rotated by the water, the higher the conversion to electric current.
c. One is impoundment. This type is the most common and involves the building of a dam to store water and later the water is released to turn turbines. The second type is diversion. This type does not require a dam. Some water is diverted from the main river to create a pen-stock that runs a turbine.
d. The advantage of hydroelectric power is that is is a clean energy source hence does not cause global warming. Global warming can have economic consequences. The operating cost of this type of plant is low hence the costs of electricity are able to be kept low for the consumers. 2 disadvantage is that creating a dam upstream causes a change in the physical and chemical characteristics of the river or water bodies affecting ecosystems. Another is that electricity is dependent on the water regime hence dependency is tied to climate.
Answer:
Option (D) On average, the molecules of gas 1 lose some of their kinetic energy to the molecules of gas 2 through collisions, resulting in the two gases eventually having the same temperature.
Explanation:
From the question given, Gas 1 was initially at a higher temperature than Gas 2.
As the two gas mixes together, there will be a transfer of heat from Gas 1 molecules to Gas 2 molecules. Now, as this continues over a period of time, the two gas will eventually have the same temperature.
Answer:
Explanation:
In wheel and axle. …with the system is the velocity ratio, or the ratio of the velocity (VF) with which the operator pulls the rope at F to the velocity at which the weight W is raised (VW). This ratio is equal to twice the radius of the large drum divided by the difference…
Supposing the runner is condensed to a point and moves upward at 2.2 m/s.
It takes a time = 2.2/g = 2.2/9.8 = 0.22 seconds to increase to max height.
Now looking at this condition in opposite - that is the runner is at max height and drops back to earth in 0.22 s (symmetry of this kind of motion).
From what height does any object take 0.22 s to fall to earth (supposing there is no air friction)?
d = 1/2gt²= (0.5)(9.8)(0.22)²= 0.24 m
Yep. he discovered that coastline from south america and africa fit together like a puzzle, which later became a part of the continential drift theory