The value of the coefficient of kinetic friction between the wagon and inclined surface is 0.78.
<h3>
Coefficient of the kinetic friction</h3>
The value of coefficient of kinetic friction is calculated as follows;
F - Ff = ma
F - μmgcosθ = ma
where;
- F is applied force
- μ is coefficient of kinetic friction
- m is mass of the wagon
- a is acceleration of the wagon
182 - μ(20 x 9.8 x cos30) = 20(2.5)
182 - 169.74μ = 50
182 - 50 = 169.74μ
132 = 169.74μ
μ = 132/169.74
μ = 0.78
Thus, the value of the coefficient of kinetic friction between the wagon and inclined surface is 0.78.
Learn more about coefficient of friction here: brainly.com/question/20241845
Explanation:
According to the law of conservation of energy
,
Potential energy = kinetic energy
I =
mgh =
v = 7.4 m/s
thus, we can conclude that the translational speed of the cylinder when it leaves the incline is 7.4 m/s.
Answer:
the terminal velocity of 14 nested coffee filters is 3.2 m/s
Explanation:
Given the data in the question;
we know that;
The terminal velocity is proportional to the square root of weight.
v ∝ √W
v = k√W
the proportionality constant depends upon the surface area and the density of the medium (like air). The coffee filters can be stacked such that the resulting area is roughly unchanged. So, the constant of proportionality k is also unchanged
v/√W = constant
v₂/√W₂ = v₁/√W₁
v₂ = v₁√(W₂ / W₁ )
given that;
v₁ = 0.856 m/s,
W₂ = 14W₁; meaning 14 coffee filters have 14 times the weight of a single coffee filter
so we substitute
v₂ = 0.856 √(14W₁ / W₁ )
v₂ = 0.856 √( 14( W₁/W₁)
v₂ = 0.856 √( 14(1)
v₂ = 0.856 √( 14 )
v₂ = 0.856 × 3.741657
v₂ = 3.2 m/s
Therefore, the terminal velocity of 14 nested coffee filters is 3.2 m/s
Boron, Aluminum, Gallium, Indium, Thallium
See this. I hope you find your answer