Explanation:
a) The height of the ball h with respect to the reference line is

so its initial gravitational potential energy
is



b) To find the speed of the ball at the reference point, let's use the conservation law of energy:

We know that the initial kinetic energy
as well as its final gravitational potential energy
are zero so we can write the conservation law as

Note that the mass gets cancelled out and then we solve for the velocity v as



plasmas are a lot like gases
hope this helps.
Answer:
gravitational potential energy.
Explanation:
Gravitational potential energy (GPE) can be defined as an energy possessed by an object or body due to its position above the earth surface.
Mathematically, gravitational potential energy is given by the formula;

Where,
G.P.E represents gravitational potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
This ultimately implies that, anytime there is height, the object must have gravitational potential energy.
Hence, an object possesses gravitational potential energy due to its height (position) and the earth's gravitational force.
<span>Example Problems. Kinetic Energy (KE = ½ m v2). 1) The velocity of a car is 65 m/s and its mass is 2515 kg. What is its KE? 2) If a 30 kg child were running at a rate of 9.9 m/s, what is his KE? Practice Problems. IN THIS ORDER…. Page 2: #s 6, 7, 8, 5. Potential Energy. An object can store energy as the result of its position.</span><span>
</span>
Answer:
a=0.212 m/s²
Explanation:
Given that
q= 10⁻⁹ C
m = 5 x 10⁻⁹ kg
Magnetic filed ,B= 0.003 T
Speed ,V= 500 m/s
θ= 45°
Lets take acceleration of the mass is a m/s²
The force on the charge due to magnetic filed B
F= q V B sinθ
Also F= m a ( from Newton's law)
By balancing these above two forces
m a= q V B sinθ



a=0.212 m/s²