Answer:
P = 942.54 W
Explanation:
Given:
Temperature, T = 310 K
mass, m = 70 kg
Now from the stefan's law,
we have the formula
P = σAT⁴
where,
P = radiate energy
σ = Stefan's constant = 5.67 × 10⁻⁸ W/(m² K⁴)
A = Area of the body
Average surface area for a human body = 1.8 m²
T = Temperature
on substituting the values we get,
P = 5.67 × 10⁻⁸ × 1.8 × 310⁴
or
P = 942.54 W
It heats up. the ice transforms directly from a solid to a vapor, releasing dust particles. the solar wind sweeps the material and it forms what to appears to be a tail.
Kinetic energy = (1/2) (mass) x (speed)²
At 7.5 m/s, the object's KE is (1/2) (7.5) (7.5)² = 210.9375 joules
At 11.5 m/s, the object's KE is (1/2) (7.5) (11.5)² = 495.9375 joules
The additional energy needed to speed the object up from 7.5 m/s
to 11.5 m/s is (495.9375 - 210.9375) = <em>285 joules</em>.
That energy has to come from somewhere. Without friction, that's exactly
the amount of work that must be done to the object in order to raise its
speed by that much.
Radiation damages the cells that make up the human body, it can even cause cancer
The independent variable is the type of fuel used and the dependent variable is the speed of the race car. The independent variable could be changed through the experimental process to see its relation with the dependent variable<span>. The dependent variable is the result of the independent variable changes.</span>