The other number is 3! Hope this helps :)
Answer:
![\large\boxed{\ln\sqrt[3]{e^4}=\dfrac{4}{3}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%5Cln%5Csqrt%5B3%5D%7Be%5E4%7D%3D%5Cdfrac%7B4%7D%7B3%7D%7D)
Step-by-step explanation:
![\text{Use}\\\\\sqrt[n]{a^m}=a^\frac{m}{n}\\\\\ln a^n=n\ln a\\\\\ln e=1\\-----------\\\\\ln\sqrt[3]{e^4}=\ln e^\frac{4}{3}=\dfrac{4}{3}\ln e=\dfrac{4}{3}\cdot1=\dfrac{4}{3}](https://tex.z-dn.net/?f=%5Ctext%7BUse%7D%5C%5C%5C%5C%5Csqrt%5Bn%5D%7Ba%5Em%7D%3Da%5E%5Cfrac%7Bm%7D%7Bn%7D%5C%5C%5C%5C%5Cln%20a%5En%3Dn%5Cln%20a%5C%5C%5C%5C%5Cln%20e%3D1%5C%5C-----------%5C%5C%5C%5C%5Cln%5Csqrt%5B3%5D%7Be%5E4%7D%3D%5Cln%20e%5E%5Cfrac%7B4%7D%7B3%7D%3D%5Cdfrac%7B4%7D%7B3%7D%5Cln%20e%3D%5Cdfrac%7B4%7D%7B3%7D%5Ccdot1%3D%5Cdfrac%7B4%7D%7B3%7D)
Answer:
(-2, 20)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Coordinates (x, y)
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = -7x + 6
y = -10x
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em> [1st Equation]: -10x = -7x + 6
- [Addition Property of Equality] Add 7x on both sides: -3x = 6
- [Division Property of Equality] Divide -3 on both sides: x = -2
<u>Step 3: Solve for </u><em><u>y</u></em>
- Substitute in <em>x </em>[2nd Equation]: y = -10(-2)
- Multiply: y = 20
I can see you come from outside the USA. No insults intended!!
.
Anyways, we have to put one side of the ratio and match it to 48.
.
Or even better...
.
MAKE!!
A!!
PROPORTION!!
.
So... Let's say 7 is proportional to 48... so 7/5 = 48/x, where x is the number equivalent to ratio of 5.
.
Cross multiply!!
<span>.
</span>7x = 240.
.
Divide 7 on both sides.
.
x = 34 2/7.
.
Hope I helped!!