Dhhrhrhrhrhrhhrrhrjrjrrjurrjjrjrrjrjrjrjrjrjrjrrjjtttjrjjrrjjrjrjrjrjrjrjrjjj
Answer:
3 RbOH + H₃PO₄ → Rb₃PO₄ + 3 H₂O
Explanation:
Let's consider the double-replacement reaction between rubidium hydroxide and phosphoric acid to form rubidium phosphate and water. The cation rubidium replaces the cation hydrogen and the anion hydroxyl replaces the anion phosphate. The balanced chemical reaction is:
3 RbOH + H₃PO₄ → Rb₃PO₄ + 3 H₂O
Answer:
This question is incomplete but the completed question is in the attachment below. And the correct is b
Explanation:
Specific heat capacity can be defined as the amount of heat required to raise to raise 1 kg of a substance by 1 kelvin. Thus, this means that when the specific heat capacity of a substance is high, it takes more energy to increase the temperature of that substance. This also means that when different substances are subjected to the same amount of heat, the substance with the higher specific heat capacity will absorb less heat; for example at a beach, water has a very high specific heat capacity, thus when the sand in the beach is hot, the beach water is still relatively cold.
From the description above, <u>it can be seen that the metal with the least specific capacity will absorb the greatest amount of heat, thus the metal is lead</u> with the specific heat capacity of 0.129 J/(g. °C).
the answer to your question is A
1) (Hvap)(moles of water)=236.9783574kJ
(40.67)(105/18.02)
2) (change in temperature)(mass)(Cliquid)=43.9345172kJ
(100)(105/18.02)(75.4)/1000
3) (Hfus)(moles of water)=35.01942286kJ
(6.01)(105/18.02)
4) (change in temperature)(mass)(Csolid)=3.181465039kJ
(15)(105/18.02)(36.4)/1000
Total released=319.1137625kJ