Answer:
18 + 38 = 56 x 16 = 896 divided by 2 = 448cm
Answer:
x = -1, and y = -2, giving you the answer (-1, -2)
Step-by-step explanation:
In the second equation, we're told that y is equal to 2x. With that, we can replace "y" in the first one with "2x", giving us:
-4x - 2x = 6
-6x = 6
x = -1
Now that we know the value of x, we can simply plug it into the first equation to find y:
-4x - y = 6
-4(-1) - y = 6
4 - y = 6
-4 + y = -6
y = -6 + 4
y = -2
So x = -1, and y = -2
Answer: the answer is 54
Step-by-step explanation:
Complete Question
The Brown's Ferry incident of 1975 focused national attention on the ever-present danger of fires breaking out in nuclear power plants. The Nuclear Regulatory Commission has estimated that with present technology there will be on average, one fire for every 10 years for a reactor. Suppose that a certain state has two reactors on line in 2020 and they behave independently of one another. Assuming the incident of fires for individual reactors can be described by a Poisson distribution, what is the probability that by 2030 at least two fires will have occurred at these reactors?
Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The rate at which fire breaks out every 10 years is
Generally the probability distribution function for Poisson distribution is mathematically represented as

Here x represent the number of state which is 2 i.e 
Generally the probability that by 2030 at least two fires will have occurred at these reactors is mathematically represented as

=> ![P(x_1 + x_2 \ge 2 ) = 1 - [P(x_1 + x_2 = 0 ) + P( x_1 + x_2 = 1 )]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5BP%28x_1%20%2B%20x_2%20%3D%200%20%29%20%2B%20P%28%20x_1%20%2B%20x_2%20%3D%201%20%29%5D)
=> ![P(x_1 + x_2 \ge 2 ) = 1 - [ P(x_1 = 0 , x_2 = 0 ) + P( x_1 = 0 , x_2 = 1 ) + P(x_1 , x_2 = 0)]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5B%20P%28x_1%20%20%3D%200%20%2C%20%20x_2%20%3D%200%20%29%20%2B%20P%28%20x_1%20%3D%200%20%2C%20x_2%20%3D%201%20%29%20%2B%20P%28x_1%20%2C%20x_2%20%3D%200%29%5D)
=> 
=> ![P(x_1 + x_2 \ge 2 ) = 1 - \{ [ \frac{1^0}{ 0! } * e^{-1}] * [[ \frac{1^0}{ 0! } * e^{-1}]] )+ ( [ \frac{1^1}{1! } * e^{-1}] * [[ \frac{1^1}{ 1! } * e^{-1}]] ) + ( [ \frac{1^1}{ 1! } * e^{-1}] * [[ \frac{1^0}{ 0! } * e^{-1}]]) \}](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5C%7B%20%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%20%29%2B%20%28%20%5B%20%5Cfrac%7B1%5E1%7D%7B1%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E1%7D%7B%201%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%20%29%20%2B%20%28%20%5B%20%5Cfrac%7B1%5E1%7D%7B%201%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%29%20%5C%7D)
=> ![P(x_1 + x_2 \ge 2 )= 1- [[0.3678 * 0.3679] + [0.3678 * 0.3679] + [0.3678 * 0.3679] ]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%3D%201-%20%5B%5B0.3678%20%20%2A%200.3679%5D%20%2B%20%5B0.3678%20%20%2A%200.3679%5D%20%2B%20%5B0.3678%20%20%2A%200.3679%5D%20%20%5D)
