Okay ...................x
For a hydrocarbon, the combustion reactions are the following:
C + O₂ --> CO₂
H₂ + 1/2 O₂ --> H₂O
The molar mass of CO₂ is 44 g/mol while C is 12 g/mol. Let's solve for amount of C in hydrocarbon.
Mass of C = (14.1 g CO₂)(1mol/44g)(1 mol C/1 mol CO₂)(12 g/mol) = 3.845 g C
So, that means that the mass of hydrogen is:
Mass of H = 4.4 - 3.845 = 0.555 g
Moles C = 3.845/12 = 0.32042
Moles H = 0.555/1 = 0.555
Divide both by the smaller value, 0.32042.
C: 0.32042/0.32042 = 1
H: 0.555/0.32042 = 1.732
We have to get an answer that is closest to a whole number. Let's try multiplying both with 4.
C: 1*4 = 4
H: 1.732*4 = 6.93≈7
<em>Thus, the empirical formula is C₄H₇.</em>
Answer:
D) 174 g/mol
Explanation:
Step 1: Given and required data
- Density of the gas (ρ): 7.10 g/L
- Ideal gas constant (R): 0.0821 atm.L/mol.K
Step 2: Convert "T" to Kelvin
We will use the following expression.
K = °C + 273.15
K = 25.0°C + 273.15
K = 298.2 K
Step 3: Calculate the molecular weight (M) of the gas
We will use the following expression derived from the ideal gas equation.
ρ = P × M / R × T
M = ρ × R × T / P
M = 7.10 g/L × (0.0821 atm.L/mol.K) × 298.2 K / 1.00 atm
M = 174 g/mol
Answer:
Endocrine glands make chemicals called hormones and pass them straight into the bloodstream. Hormones can be thought of as chemical messages. From the blood stream, the hormones communicate with the body by heading towards their target cell to bring about a particular change or effect to that cell.