Explanation:
It is known that relation between wavelength and frequency is as follows.

where,
= wavelength
c = speed of light = 
[/tex]\nu[/tex] = frequency
It is given that frequency is
. Hence, putting this value into the above formula and calculate the wavelength as follows.


= 
or, = 
Thus, we can conclude that wavelength of given radiation is
.
The answer is; Cosmic background radiation is leftover thermal energy from the big bang.
Called the coming microwave background the weak radiation fills the universe more or less uniformly. This radiation is the fossil remnants of the postulated big band at the beginning of the universe. The photos produced at the time continue to travel through the universe growing fainter over time and have fallen in the microwave range of the electromagnetic spectrum now.
The gas particles squeeze closer together