The molecular formula of organic solvent is <em>C6H12</em>
<h2>calculation</h2><h3>find the empirical formula first as in step 1 and 2</h3>
Step 1: f<em>ind the moles of C and H</em>
- moles = % composition/molar mass
- from periodic table molar mass of C= 12 g/mol while that of H= 1 g/mol
- moles is C is therefore = 85.6/12= 7. 13 moles
- moles of H= 14.4/1 - 14.4 moles
Step 2: <em>calculate the mole fraction by dividing each mole by smallest number of mole(7.13)</em>
H= 14.4/7.13 =2
the empirical formula is therefore = CH2
<h2>Then calculate the molecular formula from empirical formula</h2>
step 3: divide the grams molar mass by empirical formula mass
empirical formula mass = 12+(1 x2) = 14 g/mol
= 84.2/ 14 = 6
step 4: multiply each of the subscript within the empirical formula with the value gotten in step 3
- that is [CH2]6 = C6H12 therefore the molecular formula = <u>C6H12</u>
A way to classify an acid as being weak is to determine how strongly the substance conducts electricity. If the acid or base conducts electricity strongly, it is a strong acid or base. If the acid or base conducts electricity weakly, it is a weak acid or base.
Answer:
N₂+3H₂ ⇄2NH₃ is a thermochemical reaction whereas A+BC⇄AB is not.
A+BC⇄AB is a reaction of pure a element with a compound while N₂+3H₂ ⇄2NH₃ is a reaction between two pure elements.
Explanation:
Let A+BC⇄AB be equation i and N₂+3H₂ ⇄2NH₃ be equation ii.
The two reactions differ in that ii is a thermo-chemical reaction whereas i is not. This is because energy is included in reaction ii but not included in reaction i.
Also i is a reaction of pure a element with a compound while ii is a reaction between two pure elements. The compound is BC while the pure element is A.
Best Answer
1 mole of a substance contains 6.022x10^23 "units" of that substance.
So 0.187 mol of Na+ is 1.13x10^23 ions (6.022x10^23 x 0.187).