Answer:
Taking forces along the plane
F cos θ - M g sin θ -100 = M a net of forces along the plane
F = (M a + M g * .5 + 100) / .866 solving for F
F = (80 * 1.5 + 80 * 9.8 * .5 + 100) / .866 = 707 N
F = 707 N acting along the plane
Fn = F sin θ + M g cos θ forces acting perpendicular to plane
Fn = 707 * 1/2 + 80 * 9.8 * .866 = 1030 Newtons forces normal to plane
(this would give a coefficient of friction of 100 / 1030 = .097 = Fn)
Answer:
I think it has to do something with their ionizations... not entirely sure though.
Explanation:
Answer:
The centripetal force on body 2 is 8 times of the centripetal force in body 1.
Explanation:
Body 1 has a mass m, and its moving in a circle with a radius r at a speed v. The centripetal force acting on it is given by :

Body 2 has a mass 2m and its moving in a circle of radius 4r at a speed 4v. The centripetal force on body 2 is :

So, the centripetal force on body 2 is 8 times of the centripetal force in body 1.
Answer:
300J
Explanation:
Work done = Force x the distance travelled in the direction of the force
=300 x 1
=300J