1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
3 years ago
11

A package of mass 5 kg sits on an airless asteroid of mass 7.6 × 1020 kg and radius 8.0 × 105 m. We want to launch the package i

n such a way that it will never come back, and when it is very far from the asteroid it will be traveling with speed 170 m/s. We have a large and powerful spring whose stiffness is 2.8 × 105 N/m. How much must we compress the spring?
Physics
1 answer:
Effectus [21]3 years ago
7 0

Answer:

s =  1.7 m

Explanation:

from the question we are given the following:

Mass of package (m) = 5 kg

mass of the asteriod (M) = 7.6 x 10^{20} kg

radius = 8 x 10^5 m

velocity of package (v) = 170 m/s

spring constant (k) = 2.8 N/m

compression (s) = ?

Assuming that no non conservative force is acting on the system here, the initial and final energies of the system will be the same. Therefore  

• Ei = Ef

• Ei = energy in the spring + gravitational potential energy of the system

• Ei = \frac{1}{2}ks^{2} + \frac{GMm}{r}

• Ef = kinetic energy of the object

• Ef = \frac{1}{2}mv^{2}  

• \frac{1}{2}ks^{2} + (-\frac{GMm}{r}) = \frac{1}{2}mv^{2}  

• s = \sqrt{\frac{m}[k}(v^{2}+\frac{2GM}{r})}

s = \sqrt{\frac{5}[2.8 x 10^5}(170^{2}+\frac{2 x 6.67 x10^{-11} x 7.6 x 10^{20}}{8 x 10^5})}

s =  1.7 m

You might be interested in
At a particular instant the magnitude of the momentum of a planet is 2.05 × 10^29 kg·m/s, and the force exerted on it by the sta
Evgesh-ka [11]
727.5256266 AWNSERrRrrRr
3 0
3 years ago
Assume that the home construction industry is perfectly competitive and in long-run competitive equilibrium. It follows that: A.
olga nikolaevna [1]

Answer:

B. Marginal cost equals long-run average total cost.

Explanation:

The zero profit condition implies that entry continues until all firms are producing at minimum long run average total cost. Since the marginal cost curve cuts the long run average total cost curve at its minimum point, marginal cost and long run average total cost must be equal in long run equilibrium.

4 0
3 years ago
Starting from rest, a 6.79 kg block slides 2.82 m down a rough 20.7 ◦ incline. The coefficient of kinetic friction between the b
Veronika [31]

Answer:

23.52092 J

Explanation:

m = Mass of block = 6.79 kg

s = Sliding distance = 2.82 m

\theta = Angle of slide = 20.7°

\mu = Coefficient of kinetic friction = 0.425

g = Acceleration due to gravity = 9.8 m/s²

Work done by the force of gravity is given by

W=mgsin\theta\\\Rightarrow W=6.79\times 9.8\times sin20.7\\\Rightarrow W=23.52092\ J

The work done by the force of gravity is 23.52092 J

8 0
3 years ago
When a cube is inscribed in a sphere of radius r, the length Lof a side of the cube is . If a positive point charge Qis placed a
Nana76 [90]

Answer:

  Ф_cube /Ф_sphere = 3 /π

Explanation:

The electrical flow is

      Ф = E A

where E is the electric field and A is the surface area

Let's shut down the electric field with Gauss's law

       Фi = ∫ E .dA = q_{int} / ε₀

the Gaussian surface is a sphere so its area is

        A = 4 π r²

the charge inside is

        q_{int} = Q

we substitute

       E 4π r² = Q /ε₀

       E = 1 / 4πε₀   Q / r²

To calculate the flow on the two surfaces

* Sphere

       Ф = E A

        Ф = 1 / 4πε₀  Q / r² (4π r²)

        Ф_sphere = Q /ε₀

* Cube

Let's find the side value of the cube inscribed inside the sphere.

In this case the radius of the sphere is half the diagonal of the cube

          r = d / 2

We look for the diagonal with the Pythagorean theorem

         d² = L² + L² = 2 L²

         d = √2 L

         

we substitute

          r = √2 / 2 L

          r = L / √2

          L = √2  r

now we can calculate the area of ​​the cube that has 6 faces

          A = 6 L²

          A = 6 (√2  r)²

          A = 12 r²

the flow is

          Ф = E A

          Ф = 1 / 4πε₀  Q/r²  (12r²)

          Ф_cubo = 3 /πε₀  Q

the relationship of these two flows is

         Ф_cube /Ф_sphere = 3 /π

8 0
3 years ago
(r= -82) is a example of what correlation
coldgirl [10]

Answer:

the linear dependence between two variables

6 0
3 years ago
Other questions:
  • Can someone solve this problem and explain to me how you got it​
    6·1 answer
  • Which type of wire would have the least resistance?
    7·1 answer
  • the gravitational force that earth exerts on the moon equals 2.03 x 10^20N. The moons mass is 7.35 x 10^22kg. What is the accele
    11·1 answer
  • 4. A metal of mass 1.55kg was heated from 300K to 320K in 6 minutes by a boiling ring of 85 W rating, calculate the specific hea
    13·1 answer
  • A rocket is launched straight up with constant acceleration. Four seconds after liftoff, a bolt falls off the side of the rocket
    8·1 answer
  • A taxi traveling along a straight section of road starts from rest, accelerating at 2.00 m/s^2 until it reaches a speed of 29.0
    9·1 answer
  • What is the correct displacement for the following vectors: 4 km south, 2 km north, 5 km south, and 5 km north? 2 km south 16 km
    7·1 answer
  • Why isn't nuclear fusion used to generate electric energy in power plants?
    12·2 answers
  • Date<br>Page<br>What are the advantages of alcohol<br>thermometric liquid?<br>​
    13·1 answer
  • Which of the following objects has the most gravity? A. a semi-truck B. A grain of sand C. Jupiter D. All of these have equal gr
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!