1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
3 years ago
11

A package of mass 5 kg sits on an airless asteroid of mass 7.6 × 1020 kg and radius 8.0 × 105 m. We want to launch the package i

n such a way that it will never come back, and when it is very far from the asteroid it will be traveling with speed 170 m/s. We have a large and powerful spring whose stiffness is 2.8 × 105 N/m. How much must we compress the spring?
Physics
1 answer:
Effectus [21]3 years ago
7 0

Answer:

s =  1.7 m

Explanation:

from the question we are given the following:

Mass of package (m) = 5 kg

mass of the asteriod (M) = 7.6 x 10^{20} kg

radius = 8 x 10^5 m

velocity of package (v) = 170 m/s

spring constant (k) = 2.8 N/m

compression (s) = ?

Assuming that no non conservative force is acting on the system here, the initial and final energies of the system will be the same. Therefore  

• Ei = Ef

• Ei = energy in the spring + gravitational potential energy of the system

• Ei = \frac{1}{2}ks^{2} + \frac{GMm}{r}

• Ef = kinetic energy of the object

• Ef = \frac{1}{2}mv^{2}  

• \frac{1}{2}ks^{2} + (-\frac{GMm}{r}) = \frac{1}{2}mv^{2}  

• s = \sqrt{\frac{m}[k}(v^{2}+\frac{2GM}{r})}

s = \sqrt{\frac{5}[2.8 x 10^5}(170^{2}+\frac{2 x 6.67 x10^{-11} x 7.6 x 10^{20}}{8 x 10^5})}

s =  1.7 m

You might be interested in
Describe how one plays Dr.Dogeball​
JulsSmile [24]
•To play Dr. Dodgeball you need to have 2 teams to verse each other.
•Next, select one person from each team to be the doctor (depending on the size of the teams you can have varying amounts of doctors)
•Continue to play dodgeball how you normally would
•When a player gets hit and is “out” they have to sit on the ground and wait for the doctor to “revive them” (this usually requires the doctor dragging,touching, or moving the player that is out to a “revival place” which is usually decided on by the advisor or person in charge.
•Finally, try to get all the doctors and players out from the other team. Get the doctors first, for they cannot revive themselves. Which means the other players are out after they get hit with a ball since the doctors are out. (Some games are played where if all doctors are out the game ends)
Hope this helped! Play on! And plz mark brainliest lol this was long to write :D
4 0
3 years ago
A force F of magnitude 2x^3 is applied to stop a particle moving with an initial velocity of v0. The particle travels from x=0 t
3241004551 [841]

Answer:

Explanation:

Given that

F=2x³

Work is given as

The range of x is from x=0 to x=D

W=-∫f(x)dx

Then,

W=-∫2x³dx from x=0 to x=D

W=- 2x⁴/4 from x=0 to x=D

W=-2(D⁴/4-0/4)

W=-D⁴/2

W=1/2D⁴

The correct answer is F

5 0
3 years ago
magine an astronaut on an extrasolar planet, standing on a sheer cliff 50.0 m high. She is so happy to be on a different planet,
Mama L [17]

Answer:

\Delta t=(\frac{20}{g'}+\sqrt{\frac{400}{g'^2}+\frac{100}{g'}  }  )-(\frac{20}{g}+\sqrt{\frac{400}{g^2}+\frac{100}{g}  }  )

Explanation:

Given:

height above which the rock is thrown up, \Delta h=50\ m

initial velocity of projection, u=20\ m.s^{-1}

let the gravity on the other planet be g'

The time taken by the rock to reach the top height on the exoplanet:

v=u+g'.t'

where:

v= final velocity at the top height = 0 m.s^{-1}

0=20-g'.t' (-ve sign to indicate that acceleration acts opposite to the velocity)

t'=\frac{20}{g'}\ s

The time taken by the rock to reach the top height on the earth:

v=u+g.t

0=20-g.t

t=\frac{20}{g} \ s

Height reached by the rock above the point of throwing on the exoplanet:

v^2=u^2+2g'.h'

where:

v= final velocity at the top height = 0 m.s^{-1}

0^2=20^2-2\times g'.h'

h'=\frac{200}{g'}\ m

Height reached by the rock above the point of throwing on the earth:

v^2=u^2+2g.h

0^2=20^2-2g.h

h=\frac{200}{g}\ m

The time taken by the rock to fall from the highest point to the ground on the exoplanet:

(50+h')=u.t_f'+\frac{1}{2} g'.t_f'^2 (during falling it falls below the cliff)

here:

u= initial velocity= 0 m.s^{-1}

\frac{200}{g'}+50 =0+\frac{1}{2} g'.t_f'^2

t_f'^2=\frac{400}{g'^2}+\frac{100}{g'}

t_f'=\sqrt{\frac{400}{g'^2}+\frac{100}{g'}  }

Similarly on earth:

t_f=\sqrt{\frac{400}{g^2}+\frac{100}{g}  }

Now the required time difference:

\Delta t=(t'+t_f')-(t+t_f)

\Delta t=(\frac{20}{g'}+\sqrt{\frac{400}{g'^2}+\frac{100}{g'}  }  )-(\frac{20}{g}+\sqrt{\frac{400}{g^2}+\frac{100}{g}  }  )

3 0
3 years ago
1. What three particles are found in an atom?
Hoochie [10]

Answer:

Protons, Electrons, and neutrons

7 0
3 years ago
Read 2 more answers
According to boyle’s law, the volume of a gas is inversely proportional to its pressure if the?
Andru [333]
<span>According to boyle’s law, the volume of a gas is inversely proportional to its pressure if the "Temperature keep constant"

Hope this helps!</span>
3 0
3 years ago
Read 2 more answers
Other questions:
  • The bottom of the inner curve of a hook is called
    6·1 answer
  • A dwarf planet discovered out beyond the orbit of Pluto is known to have an orbital period of 619.36 years. What is its average
    13·1 answer
  • What is the speed of gravity
    15·1 answer
  • How has technology influenced theories over time?
    12·1 answer
  • Different between cell and dynamo short and sweet ​
    12·1 answer
  • A young boy of mass m = 25 kg sits on a coiled spring that has been compressed to a length 0.4 m shorter than its uncompressed l
    8·1 answer
  • Write how gravity and the mass of the pack affected the motion of the pack when it was thrown at different forces.
    6·1 answer
  • If a substance changes from a vapor to a liquid it ____ HELP FAST
    6·1 answer
  • Need help on this question asap pleasee
    12·1 answer
  • If the direction changes as a motorcycle goes around the curve, what else must be changing?A. AccelerationB. ForceC. SpeedD. Vel
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!