Answer:
From least to most energetically favorable, the reactions are:
Glucose to Glucose-6-P (least) ; Glucose-6-P to Fructose-6-P; ATP to ADP and Pi; PEP to pyruvate (most favorable)
Explanation:
ΔG represents the free energy change that occurs during a chemical reaction. A reaction with negative free energy change is exergonic and spontaneous. Negative free energy change represents the fact that reactants have more free energy than products. The excess of the energy is released during the reaction and makes it a spontaneous process.
q`On the other hand, a reaction with positive free energy change is endothermic and non-spontaneous. These thermodynamically unfavorable reactions are coupled with other exergonic reactions to make them occur.
Among the given example, PEP to pyruvate has the highest negative free energy change (−14.8 kcal/mol) and therefore, is energetically most favorable. On the other hand, "Glucose to Glucose-6-P" has the highest positive free energy charge (+3.3 kcal/mol) making it energetically the most unfavorable reaction.
Answer:
The two main reasons are nonpolar core of the bilayer and the active transport.
Explanation:
The membrane is structured to have two outer layers that are polar and an inner layer that is nonpolar.
If a membrane protein is exposed to the solvent, i<em>t will also have a polar side. It would be very difficult for the polar face of the membrane to move through the nonpolar core of the bilayer.</em> Therefore, this model is not feasible.
One major form of transport, active transport, moves solutes up the concentration gradient. <em>The binding of a solute and then release on another side of the membrane would only work for facilitated diffusion because it would cause a net movement of solutes down the concentration gradient.</em> It is unclear how energy could be expended to drive this process in the transverse carrier model.<em> Therefore, the transverse carrier model does not explain active transport.</em>
Answer:
Maybe
Explanation:
nucleus;ribosome
because nucleus is cells control house and ribosome responsible for providing protein..
2: carbon can be found in the atmosphere, rocks, soil, & fossil fuels,