Answer:
true
Step-by-step explanation:
We assume you intend your function to be ...

A logarithm with a base less than 1 is a decreasing curve. Here, the base appears to be 0.5, a value less than 1. Hence the curve is decreasing.
Answer:
3^6
Step-by-step explanation:
3^2 * 3^4
You add the exponents together.
Answer:
A is 27 i think and B is 15 i think
Step-by-step explanation:
Answer:
The even numbers between 0 and X represents an arithmetic sequence with a common difference of 2
The rule of arithmetic sequence = a + d(n - 1)
Where a is the first term and n is the number of terms
So, for the even numbers between 0 and X
The first term = a = 0
d = 2
So, we need to find n at the last term which is X
∴ X = 0 + 2 ( n -1 )
∴ n - 1 = X/2
∴ n = X/2 + 1
The sum of the arithmetic sequence = (n/2) × (2a + (n−1)d)
Substitute with a and d and X
So, the sum = (n/2) * (2*0 + (n−1)*2)
= (n/2) * ((n−1)*2)
= n(n-1)
= (X/2 + 1) * (X/2)
= X/2 by (X/2 + 1)
So, The quick way to add all even numbers between 0 and X always works.
Answer:
System A has 4 real solutions.
System B has 0 real solutions.
System C has 2 real solutions
Step-by-step explanation:
System A:
x^2 + y^2 = 17 eq(1)
y = -1/2x eq(2)
Putting value of y in eq(1)
x^2 +(-1/2x)^2 = 17
x^2 + 1/4x^2 = 17
5x^2/4 -17 =0
Using quadratic formula:

a = 5/4, b =0 and c = -17

Finding value of y:
y = -1/2x


System A has 4 real solutions.
System B
y = x^2 -7x + 10 eq(1)
y = -6x + 5 eq(2)
Putting value of y of eq(2) in eq(1)
-6x + 5 = x^2 -7x + 10
=> x^2 -7x +6x +10 -5 = 0
x^2 -x +5 = 0
Using quadratic formula:

a= 1, b =-1 and c =5

Finding value of y:
y = -6x + 5
y = -6(\frac{1\pm\sqrt{19}i}{2})+5
Since terms containing i are complex numbers, so System B has no real solutions.
System B has 0 real solutions.
System C
y = -2x^2 + 9 eq(1)
8x - y = -17 eq(2)
Putting value of y in eq(2)
8x - (-2x^2+9) = -17
8x +2x^2-9 +17 = 0
2x^2 + 8x + 8 = 0
2x^2 +4x + 4x + 8 = 0
2x (x+2) +4 (x+2) = 0
(x+2)(2x+4) =0
x+2 = 0 and 2x + 4 =0
x = -2 and 2x = -4
x =-2 and x = -2
So, x = -2
Now, finding value of y:
8x - y = -17
8(-2) - y = -17
-16 -y = -17
-y = -17 + 16
-y = -1
y = 1
So, x= -2 and y = 1
System C has 2 real solutions