Answer:
a
Explanation:
I think saturated fatty acids
Answer:
Rough endoplasmic reticulum and Mitochondria.
Explanation:
Disulfide bonds are known as covalent bonds. They are formed by the oxidation of 2 cysteines and these bonds can provide stability to proteins. These bonds mainly formed in intermembrane space of mitochondria and cellular compartments outside the cytoplasm endoplasmic reticulum. Both of these organelles present in an oxidation state providing an atmosphere for disulfide bond formation.
Cytoplasm and Nuclei mostly exit in reducing state because of the existence of disulfide reductase which is reducing the disulfide bonds between the cysteine residue to thiolate state. So, the disulfide bond formation will not happen.
<span>"Carrier proteins bind to the substances they transport across the membrane via facilitated diffusion, whereas channel proteins provide a pore for substances to move across the membrane via facilitated diffusion."
This is the most correct option.
The main difference, when comparing these two gates of transportation across a membrane through the same process (via facilitated diffusion or any other), is that carrier proteins bind to the substances they transport and only communicate with one environment of the cell (whether intracellular or extracellular) at the time, while channel proteins let substances move across the membrane without any binding being opened to both cell environments.</span>
Answer:
<em>Translation will be affected.</em>
Explanation:
Ribosomes are the sites where the process of translation errors. Translation can be described as the process by which mRNA is converted into the amino acids which make up specific proteins of the body. If a mutation in the genes that code for proteins of the ribosome occurs, then the process of translation will be affected. Faulty proteins may be formed as a result of this mutation which can be harmful for the body.