Answer:
The subphylum Chelicerata (New Latin, from French chélicère, from Greek χηλή, khēlē "claw, chela" and κέρας, kéras "horn")[1] constitutes one of the major subdivisions of the phylum Arthropoda. It contains the sea spiders, arachnids (including scorpions, spiders, and potentially horseshoe crabs[2]), and several extinct lineages, such as the eurypterids.
Answer:
For a gene that is expressed in a dominant and recessive pattern, homozygous dominant and heterozygous organisms will look identical (that is, they will have different genotypes but the same phenotype), and the recessive allele will only be observed in homozygous recessive individuals.
Explanation
They help because if you can adapt to things a camouflage evolution will be eaiser.
Answer:
Each biome has a unique set of environmental conditions and plants and animals that have adapted to those conditions. The major land biomes have names like tropical rainforest, grasslands, desert, temperate deciduous forest, taiga (also called coniferous or boreal forest), and tundra.
Explanation:
A biome is different from an ecosystem. An ecosystem is the interaction of living and nonliving things in an environment. A biome is a specific geographic area notable for the species living there. A biome can be made up of many ecosystems. For example, an aquatic biome can contain ecosystems such as coral reefs and kelp forests.
Answer:
Thymine in DNA occurs as the result of thymidylate synthase creating deoxythymidine monophosphate (dTMP), which then undergoes phosphorylation to deoxythymidine diphosphate (dTDP), then to Deoxythymidine triphosphate (dTTP), and incorporated into DNA by the DNA polymerase (DNA pol). Thymine in tRNA arises post-transcriptionally, by S-adenosylmethionine-dependent methylation of a uridine 5'-monophosphate (UMP) residue in RNA.
Explanation:
Thymidylate synthase is an enzyme involved in <em>de novo</em> DNA synthesis. This enzyme (thymidylate synthase) catalyzes the transfer of the one-carbon group from 5,10-methylene-tetrahydrofolate (5,10-CH2-THF) to deoxyuridine monophosphate (dUMP) and subsequent methylation to produce deoxythymidine monophosphate (dTMP), which is then phosphorylated to deoxythymidine triphosphate (dTTP) by kinases and incorporated into DNA. On the other hand, specific tRNA methylases catalyze the methylation of transference RNA (tRNA) by using S-adenosylmethionine as a methyl donor. Since tRNA methylation is a post-transcriptional modification, this chemical reaction is considered an epitranscriptomic modification on the RNA molecule.