Answer:
24
Step-by-step explanation:
The question is saying, how many three digit numbers can be made from the digits 3, 4, 6, and 7 but there can't be two of the same digit in them. For example 346 fits the requirements, but 776 doesn't, because it has two 7s.
Okay, on to the problem:
We can do one digit at a time.
First digit:
There are 4 digits that we can choose from. (3, 4, 6, and 7)
Second digit:
No matter which digit we chose for the first digit, there is only going to be 3 of them left, because we already chose one, and you can't repeat that same digit. So there are 3 options.
Third digit:
Using the same logic, there are only 2 options left.
We have 4 choices for the first digit, 3 choices for the second, and 2 for the third.
Hence, this is 4 * 3 * 2 = 24 three-digit numbers that can be made.
Answer: drag the first one to the fourth one, drag the second one to the first one,drag the third one to the second one,drag the fourth one to the third one.
Step-by-step explanation:if its wrong then im sorry
The correct answer is C (7, 9)
Firstly we know that each point is 6 away from the other in terms of x and in terms of y. Now we also know that for every 6, we will be one away from point B and five away from point A. We know this because the ratio is AB 5:1, meaning that the 5 is on the A side (they both come first).
So, we can just add 5 to each of the A value numbers to get point P.
A = (2, 4)
P = (2+5, 4+5)
P = (7, 9)
A + s = 279
s = 2a
a + 2a = 279
3a = 279
a = 279/3
a = 93 <=== adult
s = 2a
s = 2(93)
s = 186 ....students
Answer:
40
Step-by-step explanation:
to convert into radian measure, multiply by π/180
40 x π/10