1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anon25 [30]
3 years ago
5

How do you solve for #23

Mathematics
1 answer:
Bingel [31]3 years ago
8 0
5 is you answer because absolute value is the distance on a number line from 0
You might be interested in
Can i get the answer to this question please???? and fast
lord [1]
The triangle must be isosceles, due to the perpendicular bisector. Therefore, the expression 20 - 15 can be used to yield an answer of B. 5.

Hope this helps!
5 0
3 years ago
HELP ASAP
Ilya [14]

Answer:

Step-by-step explanation:

it is an adjacent/linear pair

5 0
3 years ago
Simplify 3/4 - 1 1/4
lbvjy [14]
I think the answer is -7/4.
4 0
3 years ago
Read 2 more answers
Using the Distributive Property to factorize the equation 3x^2 + 24x = 0, you get _____The solution of the equation is _____
stiv31 [10]
Solution is x=0 x=-8
7 0
3 years ago
Please prove this........​
Crazy boy [7]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π    →     C = π - (A + B)

                                    → sin C = sin(π - (A + B))       cos C = sin(π - (A + B))

                                    → sin C = sin (A + B)              cos C = - cos(A + B)

Use the following Sum to Product Identity:

sin A + sin B = 2 cos[(A + B)/2] · sin [(A - B)/2]

cos A + cos B = 2 cos[(A + B)/2] · cos [(A - B)/2]

Use the following Double Angle Identity:

sin 2A = 2 sin A · cos A

<u>Proof LHS → RHS</u>

LHS:                        (sin 2A + sin 2B) + sin 2C

\text{Sum to Product:}\qquad 2\sin\bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A - 2B}{2}\bigg)-\sin 2C

\text{Double Angle:}\qquad 2\sin\bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A - 2B}{2}\bigg)-2\sin C\cdot \cos C

\text{Simplify:}\qquad \qquad 2\sin (A + B)\cdot \cos (A - B)-2\sin C\cdot \cos C

\text{Given:}\qquad \qquad \quad 2\sin C\cdot \cos (A - B)+2\sin C\cdot \cos (A+B)

\text{Factor:}\qquad \qquad \qquad 2\sin C\cdot [\cos (A-B)+\cos (A+B)]

\text{Sum to Product:}\qquad 2\sin C\cdot 2\cos A\cdot \cos B

\text{Simplify:}\qquad \qquad 4\cos A\cdot \cos B \cdot \sin C

LHS = RHS: 4 cos A · cos B · sin C = 4 cos A · cos B · sin C    \checkmark

7 0
3 years ago
Other questions:
  • Write each rational number in the form a/b, where a and be are integers
    11·1 answer
  • Cot y, if csc y =-10/3 and cos y&lt; 0
    15·1 answer
  • A 1-kilogram rock dropped into the ocean would take 37 minutes to reach -6,660 meters. If the rock dropped steadily, how far wou
    9·1 answer
  • The _______ is used to express absolute temperatures in the English system of measurement.
    12·1 answer
  • How many triangles can be constructed with angles measuring 10º, 80º, and 90º?
    10·2 answers
  • The triangles are congruent by SSS or HL. Triangle A B C is reflected across B C to form triangle A prime B C. Triangle A prime
    13·2 answers
  • 75% of the whole is 180. what is the whole.
    6·1 answer
  • Break apart addendsas tens and ones <br> 33<br> +49
    9·1 answer
  • 5m&lt;6m+6 pls help me ​
    12·1 answer
  • Which is larger 1 1/2 or 1 15/16
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!