Answer:
The temperature is 30,92K
Explanation:
We use the formula PV=nRT. We convert the unit of pressure in kPa into atm.
101,325kPa----1atm
121kPa-------x=(121,3kPax 1 atm)/101,325kPa=1, 2 atm
PV=nRT---->T= (PV)/(RT)
T=(1,2 atm x 3L)/(1,42 mol x 0,082 l atm/K mol )= 30, 91721058 K
Answer:
Explanation:
<u>Given the following data;</u>
Initial volume = 400 mL
Final volume = 2000 mL
Initial pressure = 3 atm
To find the final pressure P2, we would use Boyles' law.
Boyles states that when the temperature of an ideal gas is kept constant, the pressure of the gas is inversely proportional to the volume occupied by the gas.
Mathematically, Boyles law is given by;
Substituting into the equation, we have;
Answer:
The concentration of chloride ion is 
Explanation:
We know that 1 ppm is equal to 1 mg/L.
So, the
content 100 ppm suggests the presence of 100 mg of
in 1 L of solution.
The molar mass of
is equal to the molar mass of Cl atom as the mass of the excess electron in
is negligible as compared to the mass of Cl atom.
So, the molar mass of
is 35.453 g/mol.
Number of moles = (Mass)/(Molar mass)
Hence, the number of moles (N) of
present in 100 mg (0.100 g) of
is calculated as shown below:

So, there is
of
present in 1 L of solution.
Answer:
The Earth absorbs most of the energy reaching its surface
Explanation:
a small fraction is reflected. In total approximately 70% of incoming radiation is absorbed by the atmosphere and the Earth's surface while around 30% is reflected back to space and does not heat the surface.
Carbon dating has<span> given archeologists a more accurate method by which they </span>can<span> determine the age of ancient artifacts. The </span>halflife<span> of </span>carbon 14<span> is </span>5730<span> ± 30 </span>years<span>, and the method of dating lies in trying to determine how </span>much carbon 14<span> (</span><span>the radioactive isotope of carbon) is present in the artifact and comparing it to levels</span>