1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iVinArrow [24]
3 years ago
8

Does anyone no the answer

Chemistry
1 answer:
gulaghasi [49]3 years ago
6 0
In terms of naming organic compounds, always identify the longest parental chain in the molecule first.

For the first it would have 3 carbons

Next number the carbons to give you the substituents the quickest.

For instance for number 1, it does not matter, but for number 2, you would start numbering the carbons from the left compared to the right, because if you number from the left

The methyl group appears immediately after, on 2nd carbon, but if you number from the right, it appears on the 3rd.

Always number to give the lowest position or numbering of the substituents.


1. 2-methylpropane
2. 2,4 - dimethylhexane
3. 2,5 - dimethylheptane

Please provide brainliest.
You might be interested in
PLEASE ANSWER ASAP! 
uranmaximum [27]
Not for sure but i would say the its B rate please

6 0
2 years ago
What happens when sodium and sulfur combine
Eduardwww [97]

Answer:

Sodium sulfide is the chemical compound with the formula Na2S, or more commonly its hydrate Na2S·9H2O. Both the anhydrous and the hydrated salts are colorless solids. They are water-soluble, giving strongly alkaline solutions. When exposed to moist air, Na2S and its hydrates emit hydrogen sulfide, which smells like rotten eggs. Some commercial samples are specified as Na2S·xH2O, where a weight percentage of Na2S is specified. Commonly available grades have around 60% Na2S by weight, which means that x is around 3. Such technical grades of sodium sulfide have a yellow appearance owing to the presence of polysulfides. These grades of sodium sulfide are marketed as 'sodium sulfide flakes'.

Contents

1 Structure

2 Production

3 Reactions with inorganic reagents

4 Uses

4.1 Reagent in organic chemistry

5 Safety

6 References

Structure

Na2S adopts the antifluorite structure,[2][3] which means that the Na+ centers occupy sites of the fluoride in the CaF2 framework, and the larger S2− occupy the sites for Ca2+.

Production

Industrially Na2S is produced by carbothermic reduction of sodium sulfate often using coal:[4]

Na2SO4 + 2 C → Na2S + 2 CO2

In the laboratory, the salt can be prepared by reduction of sulfur with sodium in anhydrous ammonia, or by sodium in dry THF with a catalytic amount of naphthalene (forming sodium naphthalenide):[5]

2 Na + S → Na2S

Reactions with inorganic reagents

The sulfide ion in sulfide salts such as sodium sulfide can incorporate a proton into the salt by protonation:

S2−

+  H+ → SH−

Because of this capture of the proton ( H+), sodium sulfide has basic character. Sodium sulfide is strongly basic, able to absorb two protons. Its conjugate acid is sodium hydrosulfide (SH−

). An aqueous solution contains a significant portion of sulfide ions that are singly protonated.

S2−

+ H

2O {\displaystyle {\ce {<=>>}}}{\displaystyle {\ce {<=>>}}} SH−

+  OH−

 

 

 

 

(1)

SH−

+ H

2O {\displaystyle {\ce {<<=>}}}{\displaystyle {\ce {<<=>}}} H

2S +  OH−

 

 

 

 

(2)

Sodium sulfide is unstable in the presence of water due to the gradual loss of hydrogen sulfide into the atmosphere.

When heated with oxygen and carbon dioxide, sodium sulfide can oxidize to sodium carbonate and sulfur dioxide:

2 Na2S + 3 O2 + 2 CO

2 → 2 Na2CO3 + 2 SO2

Oxidation with hydrogen peroxide gives sodium sulfate:[6]

Na2S + 4 H2O2 → 4 H

2O + Na2SO4

Upon treatment with sulfur, polysulfides are formed:

2 Na2S + S8 → 2 Na2S5

Uses

Sodium sulfide is primarily used in the kraft process in the pulp and paper industry.

It is used in water treatment as an oxygen scavenger agent and also as a metals precipitant; in chemical photography for toning black and white photographs; in the textile industry as a bleaching agent, for desulfurising and as a dechlorinating agent; and in the leather trade for the sulfitisation of tanning extracts. It is used in chemical manufacturing as a sulfonation and sulfomethylation agent. It is used in the production of rubber chemicals, sulfur dyes and other chemical compounds. It is used in other applications including ore flotation, oil recovery, making dyes, and detergent. It is also used during leather processing, as an unhairing agent in the liming operation.

Reagent in organic chemistry

Alkylation of sodium sulfide give thioethers:

Na2S + 2 RX → R2S + 2 NaX

Even aryl halides participate in this reaction.[7] By a broadly similar process sodium sulfide can react with alkenes in the thiol-ene reaction to give thioethers. Sodium sulfide can be used as nucleophile in Sandmeyer type reactions.[8] Sodium sulfide reduces1,3-dinitrobenzene derivatives to the 3-nitroanilines.[9] Aqueous solution of sodium sulfide can be refluxed with nitro carrying azo dyes dissolved in dioxane and ethanol to selectively reduce the nitro groups to amine; while other reducible groups, e.g. azo group, remain intact.[10] Sulfide has also been employed in photocatalytic applications.[11]

Explanation:there you go

7 0
3 years ago
The metabolic oxidation of glucose, C6H12O6, in our bodies produces CO2, which is expelled from our lungs as a gas.
enot [183]

Answer:

\large \boxed{\text{21.6 L}}

Explanation:

We must do the conversions

mass of C₆H₁₂O₆ ⟶ moles of C₆H₁₂O₆ ⟶ moles of CO₂ ⟶ volume of CO₂

We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.

Mᵣ:        180.16

         C₆H₁₂O₆ + 6O₂ ⟶ 6CO₂ + 6H₂O

m/g:      24.5

(a) Moles of C₆H₁₂O₆

\text{Moles of C$_{6}$H$_{12}$O}_{6} = \text{24.5 g C$_{6}$H$_{12}$O}_{6}\times \dfrac{\text{1 mol C$_{6}$H$_{12}$O}_{6}}{\text{180.16 g C$_{6}$H$_{12}$O}_{6}}\\\\= \text{0.1360 mol C$_{6}$H$_{12}$O}_{6}

(b) Moles of CO₂

\text{Moles of CO}_{2} =\text{0.1360 mol C$_{6}$H$_{12}$O}_{6} \times \dfrac{\text{6 mol CO}_{2}}{\text{1 mol C$_{6}$H$_{12}$O}_{6}} = \text{0.8159 mol CO}_{2}

(c) Volume of CO₂

We can use the Ideal Gas Law.

pV = nRT

Data:

p = 0.960 atm

n = 0.8159 mol

T = 37  °C

(i) Convert the temperature to kelvins

T = (37 + 273.15) K= 310.15 K

(ii) Calculate the volume

\begin{array}{rcl}pV &=& nRT\\\text{0.960 atm} \times V & = & \text{0.8159 mol} \times \text{0.082 06 L}\cdot\text{atm}\cdot\text{K}^{-1}\text{mol}^{-1} \times \text{310.15 K}\\0.960V & = & \text{20.77 L}\\V & = & \textbf{21.6 L} \\\end{array}\\\text{The volume of carbon dioxide is $\large \boxed{\textbf{21.6 L}}$}

7 0
2 years ago
why do you think Kool Aid comes in packets that has a very finely ground powder (finely ground means very small particles).
marishachu [46]

Answer:

Answer 1:

When you pour the kool-aid into water, the little crystals go straight to the bottom because they are heavier than the water. If you left them there without stirring, and came back a few days later, you wouldn't see any crystals on the bottom. That's because the stuff in kool-aid can DISSOLVE in water, which means that each little molecule of kool-aid gets suspended between the molecules of water. When that happens, you can't see the kool-aid anymore...it's trapped between the water molecules. When you stir kool-aid, you help DISSOLVE the kool-aid in water by keeping all of the crystals off the bottom and in the water. So you see, stirring kool-aid speeds up the dissolving,

Answer 2:

Are you referring to Koolaid in the granular form?If so the koolaid grains sink in water because the grains have a greater density than that of water. Once your stir the grains dissolve and go into solution where they remain because the dissolved koolaid is miscible with water unlike oil (floats) or gasoline (sinks). How long did you let the koolaid remain in the water before you stirred it? I would think that if you left it undisturbed for a long time (days) it would eventually mix on its own.

Answer 3:

I'm not a chemist, but I think I can answer your question about Kool-Aid. Kool-Aid is mostly sugar, which is heavier than water, so when you pour it in it sinks to the bottom. When you stir it up the sugar (and flavoring) dissolves so that you don't have any solid particles any more. Stuff that is dissolved in water will not sink because it is no longer a physically separate thing. It becomes part of the water (or water-sugar-flavor solution). What happens if you pour the Kool-Aid in but don't stir it? Will it eventually dissolve? You may have to wait a long time, like over night. Try it and let me know what you find!

Answer 4:

It all has to do with the rate at which kool-aid crystals (basically its SUGAR!!) dissolves in water relative to the rate at which the sugar crystals sink. If you just dump the stuff in, it sinks because it is denser than the water. As it sinks it dissolves. But when you stir the water, the rate of dissolution becomes greater than the rate of sinking and so the crystals dissolve before they reach the bottom. So it all has to do with the comparison between the rate of sinking versus the rate of dissolution.

Now I have an experiment for you. What happens if you mix up some Jello and instead of letting it sit still, you keep stirring it??? WILL THE JELLO EVER SET??

You may have to borrow your mom's mixing machine because you will get tired of stirring after 10 minutes!!!!

If you do the experiment let me know how it turns out. Actually, you should set up a control. Make two batches of Jello...with one, put it in the refrigerator and dont stir; with the other, keep stirring it (in the refrigerator), if you can figure how to arrange that without your mom or dad getting mad!!!

8 0
3 years ago
What are three things that are considered a chemical change​
kodGreya [7K]

Answer:

Color change, precipitation, bubbling

Explanation:

Chemical change changes the chemical composition and undergoes a process in which it results as a new substance.

8 0
2 years ago
Other questions:
  • You are working in a laboratory, and you are given the task of converting cyclopentene into 1, 5-pentanediol. Your first thought
    9·1 answer
  • What is the mass of 2.3 x 1021 formula units of cobalt(II) bromate?
    7·1 answer
  • The density of an alcohol is 0.788 g/mL. What volume in microliters, μL, will correspond to a mass of 20.500 mg?
    11·1 answer
  • What is formed when two Bromine atoms bond together?
    10·1 answer
  • What is the volume in liters of 321 g of liquid with a density of 0.84 g/mL
    6·1 answer
  • Which of Newton's Laws of motion requires you to have brakes on your bicycle?
    11·1 answer
  • Calculate the equilibrium constant for the following reaction: Co2+ (aq) + Zn(s&gt; CO (s) + Zn2+ (aq)
    5·1 answer
  • At low temperatures and pressure, how does the volume of a real gas compare with the volume of an ideal gas under the same condi
    14·1 answer
  • What mass of ilmenite (in grams) is required if you wish to obtain 450 g of titanium? The mass of percent of titanium is 31.6%
    10·1 answer
  • How much force is needed to accelerate a 1,000kg car at a rate of 8m/s2
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!