Answer:
=> 1366.120 g/mL.
Explanation:
To determine the formula to use in solving such a problem, you have to consider what you have been given.
We have;
mass (m) = 25 Kg
Volume (v) = 18.3 mL.
From our question, we are to determine the density (rho) of the rock.
The formula:
First let's convert 25 Kg to g;
1 Kg = 1000 g
25 Kg = ?
= 25000 g
Substitute the values into the formula:
= 1366.120 g/mL.
Therefore, the density (rho) of the rock is 1366.120 g/mL.
Answer:
<em><u>spontaneous composition</u></em> is the ingnition
of the substance due to the repid oxidation of its on material.
There is no requirement of heat of external sources.
<em><u>Rapid composition</u></em> on the other hand release large amount of heat and light energy.
Explosion and the firecracker is the best example of Rapid composition.
Answer:
53.1 mL
Explanation:
Let's assume an ideal gas, and at the Standard Temperature and Pressure are equal to 273 K and 101.325 kPa.
For the ideal gas law:
P1*V1/T1 = P2*V2/T2
Where P is the pressure, V is the volume, T is temperature, 1 is the initial state and 2 the final state.
At the eudiometer, there is a mixture between the gas and the water vapor, thus, the total pressure is the sum of the partial pressure of the components. The pressure of the gas is:
P1 = 92.5 - 2.8 = 89.7 kPa
T1 = 23°C + 273 = 296 K
89.7*65/296 = 101.325*V2/273
101.325V2 = 5377.45
V2 = 53.1 mL
<em>answer:</em><em> </em><em>option </em><em>d </em><em>(</em><em>2</em><em>×</em><em>m</em><em>o</em><em>l</em><em>a</em><em>r</em><em> </em><em>mass </em><em>of </em><em>H </em><em>+</em><em>2</em><em>×</em><em>m</em><em>o</em><em>l</em><em>a</em><em>r</em><em> </em><em>mass </em><em>of </em><em>O</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
he required empirical formula based on the data provided is Na2CO3.H2O.
<h3>What is empirical formula?</h3>
The term empirical formula refers to the formula of a compound which shows the ratio of each specie present.
We have the following;
Mass of sodium = 37.07-g
Mass of carbonate = 48.39 g
Mass of water = 14.54-g
Number of moles of sodium = 37.07-g/23 g/mol = 2 moles
Number of moles of carbonate = 48.39 g/61 g/mol = 1 mole
Number of moles of water = 14.54/18 g/mol = 1 mole
The mole ratio is 2 : 1: 1
Hence, the required empirical formula is Na2CO3.H2O
Learn more about empirical formula : brainly.com/question/11588623