Answer:
the equation of the axis of symmetry is 
Step-by-step explanation:
Recall that the equation of the axis of symmetry for a parabola with vertical branches like this one, is an equation of a vertical line that passes through the very vertex of the parabola and divides it into its two symmetric branches. Such vertical line would have therefore an expression of the form:
, being that constant the very x-coordinate of the vertex.
So we use for that the fact that the x position of the vertex of a parabola of the general form:
, is given by:

which in our case becomes:

Then, the equation of the axis of symmetry for this parabola is:

Answer:
3z(2x - 3)
Step-by-step explanation:
Area of a rectangle, a = height * width
height, h = 3z
width, w = 2x - 3
a = 3z * (2x -3)
expand
a = 6xz - 9z
a = 3z(2x - 3)
Are you sure you want ONLY the coefficient of b? If you expand this, you will have b in 3 of 4 terms.
According to Pascal's Triangle, the coefficients of (a+b)^4 are as follows:
1
1 2 1
1 3 3 1
1 4 6 4 1
So (a+b)^4 would be 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
Here, you want (3 + b)^4. Here's what that looks like:
3^4 + 4[3^3*b] + 6[3^2*b^2] + 4[3*b^3] + 1[b^4]
Which coeff did you want?