All i know is that the first one is an integer i think.
Why don't you first try to use the cosine law to solve for an angle and then make use of the sin law to solve for the remaining angles.
Cosine law
C^2 = A^2 + B^2 - 2AB(cos C)
Solve for cos C, and then take the inverse of the trig ratio to solve for the angle.
Then set up a proportion like you have done using the sin law and solve for another angle. Knowing the sum of all angles in a triangle add up to 180 degrees, we can easily solve for the remaining angle.
Y=3
to solve this you just substitute 4 in for x into the equation and solve for y. since negative 3 plus 7 is 4, y=4
Answer:
The equation of the function: y = mx + b
- m = slope = (y₂ - y₁)/(x₂ - x₁) = [5 - (-3)]/(4 - 0) = (5 + 3)/4 = 8/4 = 2
- b = y-intercept = -3
Therefore, the equation is <u>f(x) = 2x - 3</u>
When x = 0, f(x) = 2(0) - 3 = <u>-3</u>
When x increases by 1, f(x) increases by <u>2</u> (slope = the rate of change)
Answer:
(i) ∠ABH = 14.5°
(ii) The length of AH = 4.6 m
Step-by-step explanation:
To solve the problem, we will follow the steps below;
(i)Finding ∠ABH
first lets find <HBC
<BHC + <HBC + <BCH = 180° (Sum of interior angle in a polygon)
46° + <HBC + 90 = 180°
<HBC+ 136° = 180°
subtract 136 from both-side of the equation
<HBC+ 136° - 136° = 180° -136°
<HBC = 44°
lets find <ABC
To do that, we need to first find <BAC
Using the sine rule
= 
A = ?
a=6.9
C=90
c=13.2
= 
sin A = 6.9 sin 90 /13.2
sinA = 0.522727
A = sin⁻¹ ( 0.522727)
A ≈ 31.5 °
<BAC = 31.5°
<BAC + <ABC + <BCA = 180° (sum of interior angle of a triangle)
31.5° +<ABC + 90° = 180°
<ABC + 121.5° = 180°
subtract 121.5° from both-side of the equation
<ABC + 121.5° - 121.5° = 180° - 121.5°
<ABC = 58.5°
<ABH = <ABC - <HBC
=58.5° - 44°
=14.5°
∠ABH = 14.5°
(ii) Finding the length of AH
To find length AH, we need to first find ∠AHB
<AHB + <BHC = 180° ( angle on a straight line)
<AHB + 46° = 180°
subtract 46° from both-side of the equation
<AHB + 46°- 46° = 180° - 46°
<AHB = 134°
Using sine rule,
= 
AH = 13.2 sin 14.5 / sin 134
AH≈4.6 m
length AH = 4.6 m